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ABSTRACT
We develop a general approach for improving the efficiency
of a computationally bounded receiver interacting with a
powerful and possibly malicious sender. The key idea we
use is that of delegating some of the receiver’s computation
to the (potentially malicious) sender. This idea was recently
introduced by Goldwasser et al. [14] in the area of program
checking. A classic example of such a sender-receiver setting
is interactive proof systems. By taking the sender to be
a (potentially malicious) prover and the receiver to be a
verifier, we show that (p-prover) interactive proofs with k
rounds of interaction are equivalent to (p-prover) interactive
proofs with k + O(1) rounds, where the verifier is in NC0.
That is, each round of the verifier’s computation can be
implemented in constant parallel time. As a corollary, we
obtain interactive proof systems, with (optimally) constant
soundness, for languages in AM and NEXP, where the
verifier runs in constant parallel-time.

Another, less immediate sender-receiver setting arises in
considering error correcting codes. By taking the sender
to be a (potentially corrupted) codeword and the receiver
to be a decoder, we obtain explicit families of codes that
are locally (list-)decodable by constant-depth circuits of size
polylogarithmic in the length of the codeword. Using the
tight connection between locally list-decodable codes and
average-case complexity, we obtain a new, more efficient,
worst-case to average-case reduction for languages in EXP.
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1. INTRODUCTION
In this work we consider settings in which a computation-

ally powerful but possibly malicious sender interacts with
a weak and honest receiver. We explore the approach of
improving the receiver’s efficiency by delegating most of its
computational work to the sender. It is not immediately ap-
parent how to do this, as the sender may be malicious, and
thus we introduce tools for reliably delegating computation
to a potentially malicious party. We apply our approach to
the settings of proof verification and error correcting codes.

Proof Verification.
Proof verification is a central concept in theoretical com-

puter science. In this setting, a computationally powerful
and possibly malicious party, the prover, interacts with a
weak and honest party, the verifier. The prover makes a
claim (e.g., that a given graph is 3-colorable), and tries to
convince the verifier that this claim is valid. The goal is
to design a (possibly randomized and/or interactive) proof
system such that the verifier is only convinced when the
prover’s claim is in fact correct, even when the prover be-
haves maliciously. Proof verification is perhaps the most
natural example in complexity theory of a weak receiver in-
teracting with a potentially malicious powerful sender. Here,
the prover plays the part of the sender and the verifier plays
the role of the weak receiver.

Seminal works in complexity theory have uncovered the
striking power of interactive and randomized proof systems
as introduced by Babai [4] and Goldwasser, Micali and Rack-
off [15]. The works of Shamir [22], and Babai, Fortnow
and Lund [5], give efficient proof systems for every language
that could conceivably have them. The works of Babai and
Moran [7], Goldwasser and Sipser [16], Feige and Lovasz
[12], and the PCP literature, show that interactive proof
systems remain very powerful even when various limitations
are placed on the verifier or on the protocol.



In this work we continue this line of research, exploring
the power of proof systems with verifiers that have very lim-
ited computational resources. We show that proof systems
remain powerful even when the verifier is severely weakened
computationally to run in NC0 (constant parallel time).

Error-Correcting Codes.
Error correcting codes are highly useful combinatorial ob-

jects. In this setting, a given message is encoded with some
redundancy to obtain a codeword (longer than the original
message) with the property that the original message can be
recovered from any word that is close (in Hamming distance)
to the codeword. The process of recovering the message from
a (possibly) corrupted codeword is called decoding. Several
variations on the standard notion of decoding have been
considered in the literature. In some cases the codeword is
corrupted in so many locations that recovering the original
message becomes impossible; however, it might still be pos-
sible to recover a (short) list of candidate messages that is
guaranteed to contain the original message – this is known
as list decoding. One can also consider the task of recover-
ing only a single bit of the message (in some given location)
by accessing only a small number of locations in the code-
word. Codes with such local decoding properties are called
locally decodable codes and locally list-decodable codes. See
Trevisan’s survey [24] for a more detailed discussion.

In this work we focus on the efficiency of the decoder
in locally decodable and locally list-decodable codes. We
show explicit families of codes that are locally and locally
list decodable by constant depth decoders (circuits) of size
polylogarthmic in the length of the codeword.

Worst-case to average-case reductions.
The question of the efficiency of decoding locally list-

decodable codes is natural on its own. However, another
strong motivation for its study comes from its relation to
worst-case to average-case reductions, which we now briefly
disucss.

One of the most fundamental questions in complexity the-
ory is proving lower bounds for complexity classes. The
state-of-the-art circuit complexity lower bounds only apply
to circuits that are well below NC1. In fact, there exist
complexity classes that are not known to include the ma-
jority function, yet with our current state of knowledge may
include the whole of EXP (e.g. constant-depth circuits with
mod6 gates). Even if we had a worst-case lower bound for
such a complexity class C, it would not necessarily imply an
average-case lower bound; indeed, it would remain entirely
possible that for every language in EXP there exist a fam-
ily of circuits in C that decides the language very well on
random inputs (i.e. errs only on a small fraction of inputs).

One way to overcome this obstacle is to show a reduction
from solving languages in EXP in the worst-case to solv-
ing (possibly other) languages in EXP on average. A series
of works [21, 6, 18, 23, 25] has revealed a strong connec-
tion between locally (list-)decodable codes and such worst-
case to average-case reductions (for languages in EXP).
These results relate the efficiency of the decoder of a locally-
decodable code to the efficiency of the reduction. However,
the worst-case to average-case reductions implied by previ-
ous works involve computing majorities or field operations,
and they are thus too expensive to apply to a weak com-
plexity class such as the above C.

Our constructions of efficient local-decoders give new and
more efficient worst-case to average-case reductions that re-
solve this problem.

1.1 Main results

Proof verification.
We consider proof systems with extremely weak verifiers:

i.e., verifiers in NC0 (or constant parallel time). By that we
mean that the verifier’s strategy at each interaction round
can be computed in NC0 when given access to the input,
the randomness, and the messages exchanged in the previous
rounds. We show that such proof systems are surprisingly
powerful: essentially, anything that is provable in k com-
munication rounds with a polynomial-time verifier is also
provable in k + O(1) communication rounds with an NC0

verifier.1 In particular, we obtain the following characteri-
zations:

1. A language is in AM (the class of languages that have
a proof system with a constant number of communica-
tion rounds) if and only if it has a single-prover, two-
round, constant-soundness interactive proof that can
be verified in constant parallel time (Corollary 3.10).2

In particular, every language in NP has such a proof
system.

2. A language is in NEXP if and only if it has a two-
prover, five-round interactive proof of constant sound-
ness, that can be verified in constant parallel time
(Theorem 3.11).

Previous proof systems for complete languages in NP,
IP and NEXP require, at the very least, the verification
of an NP statement at the end of the protocol (even to
achieve constant soundness). By the Cook-Levin reduction,
this verification is very efficient (i.e. in AC0); indeed, a key
point in the Cook-Levin theorem is that computation can
be verified by making many local consistency checks and
ensuring that they all hold. However, while the local checks
are of constant size, the verifier still needs to verify that
all of them hold by computing an AND of large fan-in, and
therefore is not in NC0. We show, somewhat surprisingly,
that a verifier can use interaction with the prover together
with its (private) random coins to avoid performing a global
test on its entire input and proof! This is done by replacing
the global test with a test that the prover is not cheating.
The size (fan-in) of this new test is only a function of the
soundness, independent of the size of the input.3

1We observe in Section 3.3 that by adding O(log n) commu-
nication rounds it is not hard to transform any protocol into
one with an NC0 verifier. However, we achieve this while
only adding a constant number of communication rounds.
this is what enables us to obtain constant parallel time ver-
ification for languages in AM and NEXP.
2Here we follow the standard convention that measures the
complexity of the protocol only in terms of the resources
used by the verifier, i.e. it is assumed that the prover’s mes-
sages are generated instantly. Thus, our statement about
constant parallel-time verification follows from the fact that
the protocols we construct have a constant number of com-
munication rounds and that each round the verifier’s strat-
egy can be implemented in constant parallel time.
3Although we emphasize the locality of the verifier, one



Negative results.
We complement our positive results with two negative re-

sults. First, we show that constant-round proof systems
with an NC0 verifier cannot have sub-constant soundness
(unless the language itself is in NC0). Second, we show that
there is no public-coin proof system with an NC0 verifier
(again, unless the language itself is in NC0). This result
sheds light on private vs. public coins proof systems and
in particular on our protocols (which, naturally, use private
coins). In particular, it shows that both interaction and pri-
vate randomness are provably essential for non-trivial NC0

verification.

Error-correcting codes.
The application of our methodology to the setting of error-

correcting codes is a novel approach to the well-studied prob-
lem of efficient decoding: the sender embeds information in
the codeword that helps speed up the decoder’s computa-
tion. In our new codes, the decoder uses the received word
not only for reconstructing information about the original
message, but also as a computational resource. This ap-
proach allows us to transform locally (list-)decodable codes
with NC1 decoders into codes that have AC0 decoders
(with similar or slightly worse parameters). We then con-
struct explicit locally-decodable and locally list-decodable
codes with NC1 decoders, and by applying our general
transformations to these explicit codes, we obtain the fol-
lowing:

1. An explicit binary code with polynomial rate and AC0

(probabilistic) local-decoding from a word that is cor-
rupted in a constant fraction of locations (Theorem
4.5). This code has roughly the same parameters as
the canonical example of a locally-decodable binary
code with polynomial rate (see [23]).

2. An explicit family of (non-binary) codes that is lo-
cally list-decodable from agreement ε with list size
poly(1/ε) by probabilistic AC0 circuits that are of
size poly(log M/ε), where M is the length of the mes-
sage (Theorem 4.6). The alphabet size and codeword
length of these codes match the recent construction of
Impagliazzo et al. [17]. (Indeed, our construction is
based on the approximate codes of [17].)

We note that all previously known decoders for locally
(list-)decodable codes with similar parameters compute ma-
jorities or finite field operations that (provably) cannot be
implemented in AC0.

Efficient worst-case to average-case reductions.
By using the tight connection (discussed above) between

locally decodable codes and worst-case to average-case re-
ductions, we show that if EXP is worst-case hard for any
complexity class C containing uniform AC0, then EXP is

should not confuse our verifiers with PCP verifiers. While
the latter do look at a constant number of bits in the proof,
they still need to check consistency with the whole input
(e.g. when computing the PCP reduction) and therefore
are not in NC0 (as a function of the input, the proof and
the randomness). In fact, our lower bounds (see Section
3.3) show that non-trivial languages cannot have NC0 PCP
verifiers (roughly speaking, this is because PCPs are not
interactive).

hard on average for C. This gives the first worst-case to
average-case reduction (in EXP) where the worst/average-
case hardness is with respect to complexity classes that can-
not compute the majority function, nor simple operations
over finite fields.

1.2 Our approach
We improve the receiver’s efficiency by delegating some

of its computation to the (possibly malicious) sender. The
idea of delegating computation from the receiver to the un-
trusted sender seems dubious at first glance, as the receiver’s
computation is the only reliable part in the whole interac-
tion; indeed, this seems to leave the receiver very vulnerable
to malicious behavior of the sender. To give the receiver a
better guarantee, we ask more from the sender: we ask the
sender to convince the receiver that he has performed the
computations correctly (in the case of proof verification),
or to send the results of the computations with redundancy
that will allow the receiver to easily recover the correct re-
sults even from a corrupted word (in the case of codes). This
may seem to bring us back to square one; namely, the re-
ceiver again needs to verify a proof or to decode a code. So
where do we gain in efficiency? The key point is that we are
not trying now to verify an arbitrary claim, or to recover ar-
bitrary information, but rather we are trying to make sure
that a certain computation was conducted correctly. Here
one can see a connection to program checking and correct-
ing that we discuss below. Specifically, we show that if the
receiver’s computations have certain properties, which we
discuss shortly, then the tasks of verifying their correctness
or decoding the correct results of the computations can be
done extremely efficiently – much more efficiently than the
receiver’s original computation. To develop our approach
we look at functions that the receiver needs to compute and
require them to have two properties:

1. (Random instance reduction) One can compute the
function on any given instance by querying another
function (say g) at a completely random location. This
property allows us to “mask” the receiver’s computa-
tion as a random instance and to correct the sender’s
computations.

2. (Solved instance generator) We can generate efficiently
a random instance of the function g together with g’s
value on this instance. This property allows us to check
the correctness of the sender’s computations.

Combining these properties allows us to ensure (w.h.p.)
that the computations that the sender conducts for the re-
ceiver are indeed correct. Of course, this approach would not
give us much if we could not show that the above properties
can be implemented more efficiently than the original com-
putations. To that end we show, using techniques that were
developed in the field of cryptography [20, 11, 19, 3], that
for functions computable in NC1 these properties can be
implemented in probabilistic constant parallel time. Thus,
we can take any NC1 receiver and transform it into one
that runs in constant parallel time or constant depth. This
reduces our task to finding a sender-receiver protocol for the
required task in which the receiver is in NC1. For some of
our applications, even designing an NC1 receiver requires
technical effort.



Related Work.
Our approach for improving the receiver’s efficiency by

delegating some of its computation to the (possibly mali-
cious) sender, is based on a delegation methodology and
tools developed in a recent work of Goldwasser et al. on
improving the efficiency of program checkers [14], and also
inspired by the work of Appelbaum, Ishai and Kushilevitz
[3] on improving the efficiency of cryptographic primitives.
A discussion about the similarities and differences between
these works and the results presented here follows.

[14] develops a methodology of delegating computation as
a way to increase the efficiency of program checkers (see [9])
and program testers/correctors (see [10]). This idea plays
a key role in their general approach of composing program
checkers (and testers/correctors).

In fact, one can view program checking as an interactive
proof setting where the prover is analogous to the program
and the checker is analogous to a verifier. The prover in
the program checking setting is fixed in advance and re-
stricted to computing only the language being proved, as
opposed to being computationally unbounded and dynamic
(according to the messages exchanged in the protocol) in
the usual proof verification setting. Moreover, a program
checker for a language gives such a proof system both for the
language and for its complement. These differences give rise
to different challenges in the design of such protocols, and in
particular in the implementation of the delegation method-
ology. The fact that the prover is restricted to answering
queries about the language being proved, in the case of pro-
gram checkers, requires careful design of such protocols that
typically use very specific properties of the functions being
proved (checked). In fact, it is not at all well understood
which languages have such proof systems. [14] gave both
a methodology for constructing such systems with very ef-
ficient verification (checking) and a family of results for a
wide variety of languages. While in this work we consider
the (easier) setting of an unbounded prover, we (as opposed
to [14]) must deal with the challenge that the prover may
change its answers according to the messages exchanged in
the interaction. For example, in our setting one cannot de-
sign proof systems that first test the prover on random in-
puts, and then correct it (which is a common methodology
for constructing program checkers).

Our results on constructing efficient error-correcting codes
are also related to the results in [14] on building efficient
program correctors. Again, in this setting we design de-
coders that delegate work to an encoder that can perform
arbitrary (efficient) computations, whereas in the program
correction setting one must deal with the difficulty of having
a restricted encoder who can only compute membership in
some specific language. An extra challenge that we address
in this work (as opposed to [14]) is recovering from very large
fractions of errors (especially in the list-decoding setting).

The work of [3] can also be viewed as improving the effi-
ciency of players participating in a protocol by pushing com-
putation from one of the participants to another (e.g. im-
proving the efficiency of encryption at the expense of adding
to the complexity of decryption). The main difference be-
tween this approach and ours is that they consider protocols
or objects in which the goal of the sender is to reveal the re-
sults of its computation to a receiver, so there is no issue of
a malicious party. In our case, on the other hand, the sender
is untrusted but the receiver still wants it to perform com-

putations for him. Given these differences, the tools we use
are somewhat different from those used in [3]. Nonetheless,
some of the techniques we employ are similar.

1.3 Organization
In Section 2 we give some general preliminaries. Specific

background about interactive proofs and error-correcting
codes appears in Sections 3.1 and 4.1 respectively. In Sec-
tion 2.1 we develop the tools that allow us to implement
our approach. In Section 3 we present our results in the
area of proof verification. Section 3.2 shows how to trans-
form general proof systems to ones with verifiers in NC0.
In Section 3.3 we present our negative results. In Section 4
we present our results in the area of error-correcting codes.
In Section 4.2 we show how to transform codes with NC1

local decoders to codes with AC0 local decoders. In Sec-
tion 4.3 we show similar transformations for list-decodable
codes. In Section 4.4 we present our explicit constructions,
and in Section 4.5 we state the worst-case to average-case
reductions that we get using our codes.

Due to space limitations, many proofs are omitted.

2. PRELIMINARIES AND MAIN TOOLS
For a string x ∈ Σ∗ (where Σ is some finite alphabet) we

denote by |x| the length of the string, and by xi the i’th
symbol in the string. For a finite set S we denote by y ∈R S
that y is a uniformly distributed sample from S. For n ∈ N,
we denote by [n] the set {1, 2, . . . , n}.

We assume that the reader is familiar with standard com-
plexity classes such as NP, EXP and NEXP. AC0 cir-
cuits are boolean circuits (with AND, OR and NOT gates)
of constant-depth, polynomial size, and unbounded fan-in
AND and OR gates. NC1 circuits are boolean circuits of
fan-in 2, polynomial size and logarithmic (in the input size)
depth. NC0 circuits are similar to NC1, but have constant-
depth. Note that in NC0 circuits, every output bit de-
pends on a constant number of input bits. AC0, NC1 and
NC0 are the classes of languages (or functions) computable
(respectively) by AC0/NC1/NC0 circuits. In this work,
circuits may have many output bits (we specify the exact
number when it is not clear from the context). Also, all the
circuit families that we consider in this paper are log-space
uniform (even if we do not explicitly state that), i.e. each
circuit in the family can be described by a Turing machine
that uses a logarithmic amount of space in the size of the
circuit. Thus NC0 (resp. NC1) computations in this work
are equivalent to constant (resp. logarithmic) parallel time
in the CREW PRAM model.

2.1 Randomized images
We start by defining the properties of functions that we

need for our approach. The first property says that we can
easily generate a random instance together with the evalu-
ation of the function on this input.

Definition 2.1 (Solved instance generator). Let
f : {0, 1}∗ → {0, 1}∗ be a function. We say that a ran-
domized algorithm G is a solved instance generator for f if,
given 1n, it generates a pair (x, y), where x is a uniformly
random element of {0, 1}n and y = f(x).

The second property is a reduction from one function to
another that says, roughly, that we can evaluate the first



function on every instance by querying the second function
in a random location.

Definition 2.2 (Random instance reduction). Let
f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ be two func-
tions. We say that a pair of algorithms (R, E) is a ran-
dom instance reduction from f to g if R is a randomized
algorithm that given x ∈ {0, 1}n, generates a pair (x′, τ),

where x′ is a uniformly random element of {0, 1}m(n) and
τ ∈ {0, 1}∗ and it holds that E(g(x′), τ) = f(x).

If m(n) = n we say that the random instance reduction is
length-preserving. If f and g are the same function, we say
that it is a random instance self-reduction.4 We call R the
Randomizer and E the Evaluator.

The objects that we will be interested in are pairs of func-
tions that have the above two properties.

Definition 2.3 (Randomized image). Let f : {0, 1}∗
→ {0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ be two functions. We
say that g is a randomized image of f , if there is a random
instance reduction from f to g, and g has a solved instance
generator.

We say that it is length-preserving if the random instance
reduction is length-preserving, and that it is a randomized
self-image if f = g. Finally, we say that the randomized
image can be implemented in some complexity class C, if the
algorithms G, R and E (from Definitions 2.1 and 2.2) can
be implemented in this class.

Another property of functions that we will find useful is
the following strong form of downward self-reducibility.

Definition 2.4. We say that a language L is strongly
downward self-reducible if, for every constant δ > 0, L can
be decided by a family of polynomial-size oracle constant-
depth circuits such that the circuit for length n makes queries
to an oracle that solves L at input length nδ.

We conclude this section with the following lemma, which
says that there is an NC1-complete language that has all
the properties that we need. The proof of this lemma (which
is omitted) is heavily based on Barrington’s theorem [8] and
the machinery that was developed in the area of cryptogra-
phy [20, 11, 19, 3].

Lemma 2.5. There is an NC1-complete language under
NC0 reductions, that is strongly downwards self-reducible,
and has a randomized image that can be implemented by
NC0 circuits.

3. INTERACTIVE PROOFS

3.1 Preliminaries
We give here the standard definition of interactive proof

systems, adding some terminology that will be useful for us
later.

4Random instance self-reductions are a special form of what
is called in the literature random self-reductions. The word
instance in our terminology, should emphasize the fact that
the reduction is from one instance to another (random) in-
stance. General random self-reductions can make many self-
queries to the function in order to compute its value on a
given instance.

Definition 3.1. An interactive proof system for a lan-
guage L with completeness c and soundness s, is a two party
game between a probabilistic polynomial-time verifier V and
a computationally unbounded prover P . The system has two
stages: First, in the interaction stage, V and P are given a
common input x and they exchange messages to produce a
transcript t = (V (r), P )(x) (the entire messages exchange)
where r are the internal random coins of V . Then, in the
decision stage, V decides according to x, t and r, whether to
accept or reject. The following should hold:

1. (Completeness) There exist a (honest) prover strat-
egy P , such that for every x ∈ L, Prr[V (x, t, r) =
accept] ≥ c, where t = (V (r), P )(x).

2. (Soundness) For every x 6∈ L and every prover P ∗,
Prr[V (x, t, r) = accept] ≤ s, where t = (V (r), P ∗)(x).

If we do not specify c and s then their respective default
values are 2/3 and 1/3.

A multi-prover interactive proof system with p provers for
a language L is the same as an interactive proof system with
the only difference that at the interaction stage V exchange
messages with p different provers that have no communica-
tion between them. Thus the transcript t contains p separate
sub-transcripts t1, . . . , tp each with a different prover.

A round of interaction is an exchange of p messages (p ≥
1) that are sent in parallel from the verifier to the p provers
(one to each prover) and p messages that are sent in par-
allel back from the provers to the verifier (one from each
prover). Note that the number of rounds may depend on
the length of the input to the protocol. We denote by AM
(i.e., Arthur-Merlin games) the class of languages that have
protocols with one prover and a constant number of inter-
action rounds.

Next we formally define the notion of NC0 (or constant
parallel time) verifiers.

Definition 3.2. We say that round i of a proof system
(with one or more provers) can be computed in NC0 if the
computation of the verifier in this round can be performed
by an NC0 circuit (that may depend on the round i) that is
given the input x to the protocol, the randomness r and the
partial transcript from the previous i− 1 rounds.

We assume that the circuit may depend on the number of
the round because NC0 circuits cannot even increment an
integer by 1.5

Definition 3.3. We say that a language can be verified
(interactively) in constant parallel time, if it has an interac-
tive proof system (with one or more provers) with a constant
number of rounds, and the entire verifier’s strategy can be
implemented in NC0, i.e. every round of the interaction
stage as well as the decision stage.

We define a special type of proof systems in which “most”
of the verifier’s computation is pushed to the decision stage,
keeping the computation during the interaction stage ex-
tremely efficient.
5We could consider a model with the same NC0 verifier in
all rounds. The models are equivalent for protocols with
O(1) communication rounds. For other protocols results
carry through, except that we can only bound the expected
number of communication rounds when interacting with a
malicious prover.



Definition 3.4. We say that a proof system (with one or
more provers) is simple if in every round of the interaction
stage the verifier’s computation can be performed by an NC0

circuit.

3.2 Verifiers in constant parallel time
We start by showing how to transform any simple proof

system into one in which the entire strategy of the verifier
(interaction and decision) is in NC0.

Lemma 3.5. Every language that has a k-round simple
interactive proof system with p ≥ 1 provers, completeness
c and soundness s, has an interactive proof system with p
provers, k + 2 rounds, completeness c and soundness s +
δ, where δ > 0 is an arbitrarily small constant, and the
verifier’s entire strategy (both interaction and decision) is
in NC0.

Proof. We first consider the case of a single prover, i.e.
p = 1.

We proceed by showing that any simple proof system can
be transformed into a simple proof system (with one more
round) in which the decision stage can be implemented in
AC0 (this essentially boils down to evaluating a CNF for-
mula via the Cook-Levin reduction) and hence also in NC1.
Then we add one more round to enable the verification to
be performed in NC0. Details follow.

Let V ′ be the verifier and P ′ the honest prover in the
original (simple) protocol and let V, P be these entities in
the new protocol. By the definition of a simple proof system
(Definition 3.4), the computations of V ′ during the interac-
tion stage are in NC0. Thus, V and P run the first k rounds
as in the original protocol, and we then add two rounds as
follows.

Round k + 1.
In the original protocol, given the input x (of length n),

the transcript t and the verifier’s random coins r, V ′ can
decide in polynomial time whether to accept or reject. Let
|(x, t, r)| = m(n) = poly(n). This round is as follows: V
sends all its random coins to P and P sends back the tableau
of the computation V ′(x, t, r).

If V were an AC0 circuit, it could at this stage verify
that the tableau is correct and deduce the output of V ′

(accept/reject). This is because checking the validity of the
tableau amounts to verifying that x, t, r is written in the first
row, and that all the local transitions are legal. However V
is not an AC0 circuit. So we proceed to the next round.

Round k + 2.
Consider the language L associated with the above AC0

computation. That is, an instance contains a tableau T
and x, t, r as above, and it belongs to L if the tableau T
is consistent with the computation V ′(x, t, r), and if this
computation accepts. In particular L ∈ NC1 and therefore,
by Lemma 2.5, it has a randomized image I.

Let ` be an integer that will be determined later. Given
an instance a = (T, x, t, r), V does the following: for each
i ∈ [`] (in parallel and with independent random coins),
choose uniformly vi ∈R {0, 1}. If vi = 0, then V runs the
NC0 solved instance generator for I on input length m′(n),
to obtain a pair (ci, yi). If vi = 1, then V runs on a the
NC0 random instance reduction from L to I, to obtain a
pair (ci, τi). Here |ci| = m′(n) = poly(m(n)) = poly(n). V

then sends to P the message (c1, . . . , c`), and P sends back
answers (b1, . . . , b`) ∈ {0, 1}`.

Decision.
V accepts if and only if the following holds:

1. For every i ∈ [`] for which vi = 0, yi = bi.

2. For every i ∈ [`] for which vi = 1, E(bi, τi) = 1 (re-
call that E is the evaluator in the random instance
reduction from L to I).

Correctness.
Clearly, if ` is a constant (independent of n) the entire

strategy of V can be implemented in NC0. We proceed to
prove completeness and soundness.

Claim 3.6. The protocol has completeness c.

Proof. The honest prover P plays the first k rounds like
the honest prover P ′ of the original protocol. It then sends
the correct tableau, and the correct values b1, . . . , b`, which
are the membership values (0/1) of the instances c1, . . . , c`

in I. By the definition of solved instance generator, this
implies that with probability 1, the verifier passes the first
test. By the definition of random instance reduction, for
every i ∈ [`] for which vi = 1, E(bi, τi) = 1 if and only
if (T, x, t, r) ∈ L. This happens exactly when the original
verifier V ′ accepts the original protocol, and the probability
for that is at least c.

Claim 3.7. The protocol has soundness s + 2−`.

Proof. Let x be an instance not in the language. Con-
sider the event:

A : E(bi, τi) = 1 for every i ∈ [`] for which vi = 1

By the soundness of the original protocol and the defini-
tion of random instance reduction, Pr[A] ≤ s. If event A
does not occur, the only way that a cheating prover, P ∗,
can convince V to accept is by cheating on ci for every i for
which vi = 1. If the prover cheats on cj where vj = 0, then
by the definition of solved instance generator, V will reject
with probability 1. In other words, in order to cheat and
not get caught, P ∗ must cheat on every i for which vi = 1
and give the correct answer on every i for which vi = 0.
By the definitions of solved instance generator and random
instance reduction, the vi’s are independent of (c1, . . . , c`).
Thus P ∗ has to guess exactly the value of ` independent un-
biased coin tosses which he can do with probability at most
2−`. We conclude that the probability that P ∗ can convince
V to accept is bounded by s + 2−`.

Let δ > 0 be an arbitrarily small constant. By setting
` = log(1/δ) we conclude the proof for single-prover systems.

For multi-provers, the same arguments apply where the
last two rounds (k + 1, k + 2) are played only with the first
prover P1. That is, in round k+1, V sends to P1 its random
coins as well as the transcripts of messages exchanged with
all the other provers, then P1 and V proceed as above.

Remark 3.8. In the proof above, the “hardest” compu-
tation that the verifier is performing is an AND of fan-in
log(1/δ). In terms of parallel computing time this amounts



to log log(1/δ). Generalizing the argument to non-constant
δ we can obtain proof systems with negligible soundness (e.g.
n− log n) with a verifier that runs in O(log log n) parallel
time.

Remark 3.9. Vadhan [26] has suggested an alternative
implementation of round k + 2: the prover wants to con-
vince V ′ that V (x, t, r) = 1. Let b = V (x, t, r), and for
c ∈ {0, 1} denote Ic = {z : I(z) = c}. The verifier generates
an instance y that is uniformly distributed in Ib restricted
to the relevant input length. It also generates an instance
y′ that is uniformly distributed in I0 restricted to the same
input length. The ability to sample such y, y′ follows directly
from the techniques used to prove the results in Section 2.1.
The verifier then chooses at random one of y and y′ and the
prover has to say whether it is from I1 or I0. Note that this
is very similar to the protocol for Graph Non-Isomorphism
[13].

General Proof Systems.
Next we want to use Lemma 3.5 to obtain our results

about general proof systems. For proof systems with a single
prover, we can first apply the transformation of Goldwasser
and Sipser [16] to obtain a public-coin protocol (which is
clearly also a simple protocol). Then, by applying Lemma
3.5 to the resulting protocol we obtain a general transfor-
mation from any interactive single-prover proof system to a
one in which the verifier is in NC0 with an addition of O(1)
rounds. In particular, we obtain the following corollary:

Corollary 3.10. A language is in AM if and only if
it can be verified in constant parallel time with one prover,
two rounds of interaction, and an arbitrarily small constant
soundness.

Next we want to apply similar arguments to obtain NC0

verifiers for multi-prover proof systems. The problem is that
now we do not readily have a general transformation to sim-
ple proof systems as we had in the case of a single prover.
However, we show that a modification of the techniques from
[12] gives us a general transformation to simple 2-provers
systems. Then, combining this with Lemma 3.5, and the
MIP characterization of NEXP [12] , we obtain the follow-
ing theorem.

Theorem 3.11. A language is in NEXP if and only if it
can be verified in constant parallel time with two provers, five
rounds, perfect completeness and soundness δ, where δ > 0
is an arbitrarily small constant.

3.3 Lower bounds
In this section we prove that the use of private coins in our

protocol is inherent. We also show that constant soundness
is the best one can hope for in proof systems that have a
constant number of rounds and an NC0 verifier. These
statements hold unless the language is already in NC0.

We start with a more refined definition of NC0.

Definition 3.12. For k ∈ N, NC0
k is the class of NC0

circuits in which every output bit depends on at most k input
bits. We say that a language belongs to the class NC0

k if for
every n ∈ N, there is an NC0

k circuit that decides Ln =
L ∩ {0, 1}n.

Note that if a language is in NC0
k then its characteristic

function (at every input length) is influenced by at most k
variables.

Theorem 3.13. Let L ⊆ {0, 1}∗ be an arbitrary language,
then L does not have a public-coin interactive protocol with
an NC0 verifier, unless L is in NC0.

Proof. (sketch) Suppose L is not in NC0
k for any con-

stant k and yet it has a public-coin protocol with an NC0

verifier. In particular, this means that the verifier decides
whether to accept its input using an NC0 circuit that runs
on its input, randomness and the transcript. The number of
input bits that influence the verifier’s decision is constant.
Let k be the overall number of input bits that influence the
verifier’s decision bit. Let n be an input length for which
Ln does not have an NC0

k circuit. Let x1, x2 ∈ {0, 1}n be
such that the k bits that the verifier reads are the same in
x1 and x2, yet x1 ∈ L and x2 6∈ L. By the fact that Ln

does not have an NC0
k circuit (and hence its characteristic

function is influenced by more than k variables), such a pair
of instances exist. Consider the dishonest prover P ∗, that
on input x2, for any verifier randomness, plays the strategy
of the honest prover on input x1. Because the protocol is
public-coin, the verifier’s view in both cases is exactly the
same, i.e. for any verifier randomness, the prover’s messages
on inputs x1 and x2 are identical, and thus the bits that the
verifier uses to make its decision are also identical. By the
protocol’s completeness on x1, the soundness of the protocol
on x2 is violated and we get a contradiction.

Next we state our negative result regarding sub-constant
soundness (the proof is omitted).

Theorem 3.14. Let L ⊆ {0, 1}∗ be an arbitrary language,
then L does not have a constant-round interactive protocol
with sub-constant soundness and an NC0 verifier, unless L
is in NC0.

Discussion.
At first glance, it may seem that the proof of Theorem

3.13 should also rule out protocols with private coins (at
least for constant-round protocols). We want to explain why
this is not the case. We believe that this explanation sheds
some interesting light on public versus private coins in the
context of NC0 verifiers, and specifically on our protocol
(from Lemma 3.5). The idea in the proof of Theorem 3.13
is that we can let the prover choose its strategy regardless
of the input. And then we can argue that since the verifier
reads only a constant number of bits from the input before
he makes his decision, we can change one input with an-
other without the verifier noticing the change. This cannot
be done when the verifier has private coins. Now the prover
cannot decide on an arbitrary strategy, because it does not
know the private coins of the verifier (i.e. different inputs
with the same randomness will not give the same view any-
more). This means that if we design our protocol properly,
we can force the prover’s bits to depend on the entire input.
In this case, the decision bit also depends on the entire input
via the prover’s messages. I.e. even though the decision bit
depends on a constant number of prover’s bits, each one of
them may depend on the entire input. We therefore cannot
replace the input without the verifier’s noticing the change.



To see how this works in practice, consider the protocol
we give in the proof of Lemma 3.5. The last message of the
prover contains only a constant number of bits. Let i ∈ [`]
be such that vi = 1, and consider the prover’s bit bi. This
bit depends on the entire input via the instance ci that was
generated by applying the random instance reduction on
the instance a = (T, x, t, r). The protocol, by using private
coins, forces the prover to give the correct answer on ci. The
dependency of bi on the input is then revealed to the verifier
by computing E(bi, τi).

Moving to our result about sub-constant soundness, we
want to point out that if we allow a non-constant number of
rounds, we can achieve sub-constant soundness. In fact with
an addition of O(log n) rounds we can achieve the soundness
of the original protocol (which can be as small as 2−n). This
is because we can spread the AC0 computation at the deci-
sion stage of the simple proof system, over O(log n) rounds
of the protocol. That is, consider the NC1 circuit that com-
putes this AC0 computation. The NC0 verifier computes
at each round another level of the NC1 circuit. it sends the
prover the results of the computation. The prover sends a
dummy message, and the verifier continues the computation
by reading from the transcript the results from the previous
layer of the circuit.

A key point in our results is that we only add a constant
number of rounds to obtain an NC0 verifier. This is what
allows us to obtain constant parallel time proof systems for
AM and NEXP.

4. ERROR-CORRECTING CODES

4.1 Preliminaries
We view error-correcting codes as functions mapping M

symbols (from some finite alphabet Σ) to N = N(M) sym-
bols. In our definitions and theorems we consider an error-
correcting code to be an infinite family of such functions,
one for each M ∈ N. However, to ease the presentation, our
definitions and statements consider a single function from
the family. Thus when we talk in a definition or a state-
ment about a code C : ΣM → ΣN , we actually mean a
family of functions {CM : ΣM → ΣN}M∈N. Similarly, when
we associate circuits with codes (say the decoder circuit),
we talk about a single circuit meaning a family of circuits.
We use ∆(x, y) to denote the fractional Hamming distance
between two strings x and y (over some finite alphabet).

Definition 4.1. [locally decodable codes] We say that a
code C : ΣM → ΣN is an explicit locally-decodable code from
distance 0 ≤ δ ≤ 1 if the following holds:

1. C is explicit in the sense that for every x ∈ ΣM and
i ∈ [N ], C(x)i is computable in time poly(M).

2. There is a probabilistic oracle algorithm DEC that runs
in time poly(log N), such that for every x ∈ ΣM , given
oracle access to a string y ∈ ΣN satistfying ∆(y, C(x))
≤ δ, for every i ∈ [M ], DECy(i) computes xi correctly
with probability at least 3/4 (over its coins).

If DEC makes all the queries to y in parallel we say that it
is non-adaptive.

We often restrict the complexity of DEC. For example,
we may say that C is locally-decodable (with the specified

parameters) by AC0 circuits (or NC1 circuits etc.), mean-
ing that DEC is computable by probabilistic AC0 circuits
of size poly(log N).

The next definition follows the formulation of Sudan, Tre-
visan and Vadhan [23] (with some small modifications).

Definition 4.2. [locally list-decodable codes] We say that
a code C : ΣM → ΣN is an explicit locally list-decodable
code from agreement ε and with list size ` (for ε = ε(N) ∈
(0, 1) and ` = `(N, ε) ∈ N) if it is explicit in the sense of
Definition 4.1 and the following holds: there is a probabilistic
oracle algorithm DEC that runs in time poly(log(N)/ε) such
that: for every x ∈ ΣM , given oracle access to a string y ∈
ΣN that satisfies ∆(y, C(x)) ≤ 1 − ε, DECy outputs a list
of probabilistic oracle machines M1, . . . , M` such that, with
probability at least 3/4, there exists j ∈ [`] such that for
every i ∈ [M ], My

j (i) computes xi correctly with probability
at least 3/4 (over Mj’s coin tosses). Furthermore, each Mj

runs in probabilistic time poly(log(N)/ε).
If DEC and the Mj’s make all their queries to y in parallel

we say that the decoding procedure is non-adaptive.

As before, we often restrict the complexity of DEC and of
the Mj ’s. And so we say, for example, that C is locally list-
decodable (with the specified parameters) by AC0 circuits,
meaning that both DEC and the Mj ’s are computable by
probabilistic AC0 circuits of size poly(log(N)/ε).

4.2 Unique decoding
In this section we show how to transform a locally (and

uniquely) decodable code that has an NC1 decoder to a
locally decodable code (with almost the same parameters)
that has an AC0 decoder.

Theorem 4.3. Let C : {0, 1}M → {0, 1}N be an explicit
locally-decodable binary code that can be non-adaptively de-
coded from some constant distance δ < 1/4 by a probabilis-
tic NC1 circuit of size polylog(N). Then there is an ex-
plicit binary code C′ : {0, 1}M → {0, 1}2N that is locally-
decodable from distance δ/2 by a probabilistic AC0 circuit
of size polylog(N).

Intuition.
This application of our general approach is the simplest

one. The idea is that the new encoding of x ∈ {0, 1}M has
two (equally long) parts appended together. The first part
is the original encoding of x and the second part is the truth-
table of the randomized image I of the NC1-complete lan-
guage L (given by Lemma 2.5) on instances of length log N .
Given a word that is close enough to a codeword in the new
code, we know that both parts are close to what they should
be. We then simulate in AC0 the original NC1 decoder (on
the first half of the received word) as follows: every time
we need to compute something (in NC1) that we cannot
do in AC0, we reduce this computation to an instance y
of the language L. We then use the random instance re-
duction from L to I (computable in NC0) to compute this
y by querying the truth-table of I (i.e. the second half of
the received word) at a random location. Since the second
half is a string that is close to the truth-table of I, with
relatively high probability we compute L(y) correctly. We
can increase the success probability (in AC0) by repeating
many times in parallel and taking the approximate majority



of the answers (this can be done in AC0 by [2, 1]). Thus
with high probability, the new AC0 decoder decodes the
first half exactly as the old NC1 decoder does.

A subtle issue that we need to deal with is the fact that
the I-instances we reduce to need to be of length exactly
log N (so that the two parts of the code are equally long).
To that end we use the strong downwards self reducibility
property of L (see Definition 2.4 and Lemma 2.5) to adjust
the lengths of the instances we work with.

4.3 List decoding
In this section we show how to transform a locally list-

decodable code that has an NC1 decoder to a locally list-
decodable code that has an AC0 decoder.

Theorem 4.4. Let Σ be a finite alphabet and let C :
ΣM → ΣN be an explicit code that is non-adaptively lo-
cally list-decodable by probabilistic NC1 circuits from agree-
ment ε and with list size `. Then there is an explicit code

C′ : ΣM → ΓN′ that is locally list-decodable by probabilis-
tic AC0 circuits, from agreement ε and with list size 2`,

where |Γ| = |Σ| · O(1/ε), and N ′ = max{N, 2(log(N)/ε)δ},
for arbitrarily small constant δ > 0. In particular, for
ε ≥ 1/poly(log N), we obtain N ′ = N .

Intuition.
The approach that we used to prove Theorem 4.3 cannot

be used to recover from distance more than 1/4 (even if we
start with a code that can be list-decoded from a large dis-
tance) because we need that the truth-table part of the word
will be more than 1/2 close to the respective half in the code-
word. One thing we can do to improve the distance that we
can recover from, at the price of doubling the alphabet size,
is to append the truth-table componentwise. That is, we
append to each bit of the original codeword an entry of the
truth-table (recall that they are of the same length). This
allows us to list-decode from distance 1/2−1/ log log(N) (as-
suming the original code has a locally list-decoder in NC1),
and the alphabet size is 4 (two bits per symbol). However,
to recover from distance more than 1/2 requires a different
technique. The idea now is to append (again, component-
wise) the direct-product of I’s truth table (I is, as before, the
randomized image of the NC1-complete language L from
Lemma 2.5). That is, every symbol in the new encoding
contains a symbol from the old encoding concatenated with
the binary string I(i1), . . . , I(is), where (i1, . . . , is) is a tuple
of binary strings of some length that is determined in the
proof. For every possible tuple we will have a different entry
in the codeword.

As in the proof of Theorem 4.3, the new decoder simulates
the old decoder. When it needs to compute some NC1 com-
putation, it creates a uniformly distributed s-tuple where in
each entry it either (with probability 1/2) puts a random
instance for which it knows its correct membership status
in I (this can be done by using the solved instance genera-
tor for I, see Definition 2.1), or (with probability 1/2) puts
a random instance from which it can conclude the value of
the NC1 computation given the correct membership status
of that instance in I (this can be done using the random
instance reduction from L to I and the fact that L in NC1-
complete). The new decoder now reads from the correspond-
ing location in the received word the (possibly corrupted)

membership status of every instance in the s-tuple. It then
checks whether on the entries for which it knows the correct
answer, the received word is correct. If not, it declares this
location in the received word to be corrupted. Otherwise it
is a good indication that the symbol is not corrupted and
it assumes that the other values it reads from it are correct
and it infers from them the correct value of the NC1 com-
putation. The success probability of this procedure can be
significantly improved by using a careful amplification argu-
ment. Given this procedure we can continue the simulation
as in the proof of Theorem 4.3.

A subtle issue is the fact that the length of the original
codeword and the length of the extra information we ap-
pend to it (i.e. the number of s-tuples) are not necessarily
the same. To solve this, we write many copies of the origi-
nal codeword in the new one, so that the repeated original
codeword is of the same length as the number of s-tuples.

4.4 Explicit constructions
In this section we apply our general theorems from the

previous sections to construct codes with local-decoders in
AC0. We do that by first constructing codes with NC1

decoders and then applying the general transformations to
them. Previous locally-decodable codes with the parameters
that we need are not known to be in NC1 (in particular
decoding the code given in [23] involves solving a system of
linear equations). We therefore construct new explicit codes
with NC1 decoders, and then apply our transformations to
them.

Theorem 4.5. There is an explicit code C : {0, 1}M →
{0, 1}poly(M) that can be locally decoded from distance 1/25
by probabilistic AC0 circuits of size poly(log M).

Theorem 4.6. For every ε > 0, there is an explicit code
C : {0, 1}M → ΣN that is locally list-decodable by proba-
bilistic AC0 circuits of size poly(log M/ε) from agreement

ε and with list size poly(1/ε). Where |Σ| = 2poly(1/ε), and

N = Mpoly(1/ε).

4.5 Worst-case to average-case reductions
By using our efficiently locally list-decodable codes, to-

gether with ideas from [23, 25], we obtain the following
worst-case to average-case reduction for EXP languages
(which we state in terms of lower-bounds).

Theorem 4.7. Let C be a class of algorithms (or Boolean
circuits) containing probabilistic uniform AC0. Then for ev-
ery EXP function f : {0, 1}∗ → {0, 1}, there is an EXP

function f̂ : {0, 1}∗ → {0, 1} such that: for every large
enough m, if there is no algorithm (or family of circuits)
in the class C that computes f at length m correctly in the
worst-case, then there is no algorithm (or family of circuits)

in the class C that can compute f̂ at length n = poly(m) cor-
rectly on at least a 1/2 + 1/(log n)α fraction of the inputs,
where α > 0 is a universal constant.
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