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Abstract
Pseudorandomness – that is, information that “appears random” even though it is
generated using very little true randomness – is a fundamental notion in cryptography
and complexity theory.

This thesis explores the applications of pseudorandomness within complexity the-
ory, with a focus on pseudorandomness that can be constructed unconditionally, that
is without relying on any unproven complexity assumptions. Such pseudorandom-
ness only “fools” restricted classes of algorithms, and yet it can be applied to prove
complexity results that concern very general models of computation. For instance,
we show the following:

• Randomness-Efficient Error Reduction for Parallel Algorithms: Typically, to
gain confidence in a randomized algorithm, one repeats the algorithm several
times (with independent randomness) and takes the majority vote of the exe-
cutions. While very effective, this is wasteful in terms of the number of random
bits that are used. Randomness-efficient error reduction techniques are known
for polynomial-time algorithms, but do not readily apply to parallel algorithms
since the techniques seem inherently sequential. We achieve randomness-efficient
error reduction for highly-parallel algorithms. Specifically, we can reduce the er-
ror of a parallel algorithm to any δ > 0 while paying only O(log(1/δ)) additional
random bits, thereby matching the results for polynomial-time.

• Hardness Amplification within NP: A fundamental question in average-case
complexity is whether P 6= NP implies the existence of functions in NP that
are hard on average (over randomly-chosen inputs). While the answer to this
question seems far beyond the reach of current techniques, we show that power-
ful hardness amplification is indeed feasible within NP. In particular, we show
that if NP has a mildly hard-on-average function f (i.e., any small circuit for
computing f fails on at least a constant fraction of inputs), then NP has a func-
tion f ′ that is extremely hard on average (i.e., any small circuit for computing
f ′ only succeeds with exponentially-small advantage over random guessing).

Previous results only obtained functions f ′ that could not be computed with
polynomial advantage over random guessing. Our stronger results are obtained
by using derandomization and nondeterminism in constructing f ′.

A common theme in our results is the computational efficiency of pseudorandom gen-
erators. Indeed, our results both rely upon, and enable us to construct pseudorandom
generators that can be computed very efficiently (in terms of parallel complexity).
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Chapter 1

Introduction

In everyday life, randomness is often nothing more than a source of frustration.
Indeed, we could often do without the uncertainty of weather forecasts, the random
fluctuation of financial markets and other unpredictable phenomena that seem only
to make our daily existence more difficult.

The statistician, however, takes a different view of randomness. This is because
she understands that randomness can be a powerful resource. For instance, she knows
that she can learn a lot about a large population by examining only a small number
of samples, provided the samples are chosen randomly. While counterintuitive at first,
this use of randomization for sampling is well-known and widely-practiced. Moreover,
the statistician loses no sleep over her decision to use randomness in this way, since she
also knows that the randomization is essential: any deterministic sampling strategy
is bound to be far less efficient (by requiring her to look at essentially every member
of the population).

Over the last thirty years, computer scientists have discovered similarly power-
ful uses of randomness in algorithms, cryptography and computational complexity,
and these discoveries have had a profound effect on the field. Indeed, randomized
algorithms are now the standard for “efficient” computation and randomization is
essential to many of the most fundamental notions in cryptography and computa-
tional complexity. Moreover, in many cases it is known that the use of randomness
is unavoidable, just as in the sampling example described above. Nonetheless, there
remain conspicuous applications of randomization for which it is not known that
randomness is necessary, the most notable being efficient randomized algorithms.

In particular, although initial breakthroughs in randomized algorithms suggested
that randomness can significantly improve the performance of algorithms, the com-
mon belief now is that this is in not the case for polynomial-time algorithms. Indeed,
it is widely believed that any problem with a randomized polynomial-time algorithm
also has a deterministic polynomial-time algorithm (although the running-time of the
deterministic algorithm may be a much worse polynomial than that of the randomized
algorithm).

2



Chapter 1: Introduction 3

1.1 Pseudorandomness

The conjecture that randomized algorithms can be derandomized is not simply
wild speculation, but rather is based on the belief that it is possible to efficiently
generate pseudorandomness – that is, bits that “appear” random, even though they
are generated using very little true randomness. This is because, loosely speaking, one
could replace the random bits that a randomized algorithm uses with pseudorandom
bits (that were generated using very little randomness) to obtain a new algorithm
that behaves in essentially the same way (because the pseudorandom bits “appear”
random) but that uses very little randomness (or often none at all).

The hypothetical procedure that produces these pseudorandom bits is called a
pseudorandom generator (or a PRG for short), and is the fundamental object of
study in pseudorandomness. An informal definition is the following:

A function G : {0, 1}` → {0, 1}n is an ε-pseudorandom generator if
for any “efficient” decision algorithm A:

∣∣∣Pr
s

[A(G(s)) accepts]− Pr
x

[A(x) accepts]
∣∣∣ ≤ ε,

where s ∈ {0, 1}` and x ∈ {0, 1}n are chosen uniformly at random.

The input s of a PRG is referred to as the seed and the goal is typically to make `
– the seed-length – as short as possible. Other goals often include ensuring that G is
efficiently computable and minimizing the error ε.

Of course, for the above definition to make sense, one must specify what is per-
missible as an “efficient” algorithm A. There is, however, no single correct notion of
“efficiency” – this is often guided by the intended application. Indeed, it is by it is
by considering different notions of efficiency that the field of pseudorandomness has
developed a vast array of different PRGs, as we discuss below.

1.1.1 Conditional vs. Unconditional Pseudorandomness

One of the major open challenges in complexity theory is to derandomize random-
ized polynomial-time algorithms, i.e. to show that P = BPP, and a natural approach
for doing so is to construct a pseudorandom generator that fools polynomial-time com-
putations.1 It is known, however, that such a pseudorandom generator would imply
the existence of explicit functions with high circuit complexity, thereby resolving a
notorious long-standing open problem in complexity theory.

Therefore, research in derandomization has focused on some more tractable tasks:

1More precisely, the PRG should fool non-uniform polynomial-time computations, or equivalently
polynomial-size circuits; however, we shall not stress this point for the purposes of this informal
discussion.
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• Conditional PRGs: Constructing pseudorandom generators for polynomial-
time computations based on unproven complexity assumptions.

• Unconditional PRGs: Constructing pseudorandom generators for models of
computation that are weaker than (or incomparable to) polynomial-time using
no unproven complexity assumptions.

Naturally, the goal of the first line of research is to use the weakest complexity as-
sumptions possible and the goal of the second line of research is to build PRGs for
the most powerful class of algorithms possible.

Both directions have enjoyed remarkable success. A major achievement in the
first approach is the celebrated work of Imagliazzo and Wigderson [IW97], which
shows how to construct PRGs for polynomial-time from explicit functions having
exponential (worst-case) circuit complexity. Meanwhile, research in unconditional
PRGs has resulted in PRGs for algorithms that run in small space/memory, constant-
depth circuits as well as a wide variety of natural statistical tests.

The focus of this thesis is on the latter type – unconditional pseudorandom gen-
erators – and in particular on their applications to derandomization and other areas
of computational complexity.

1.1.2 Applications of Unconditional PRGs

In light of the above discussion, one natural application of unconditional pseu-
dorandom generators is in derandomizing randomized computations. While it is too
much to hope that these generators will fool arbitrary polynomial-time algorithms,
they can sometimes be shown to fool algorithms that have a particular structure. A
good example of this is the case of randomness-efficient error reduction.

Algorithmic Derandomization and Error-Reduction

The typical strategy for reducing the error of a randomized algorithm is to repeat
the algorithm (say k times) using independent randomness for each execution, and
then to output the majority vote of the executions. Thus, if the original algorithm had
error probability at most 1/3 (or any constant less than 1/2), the error probability of
the new algorithm is, by a Chernoff bound, at most 2−Ω(k). However, this approach is
quite wasteful in terms of random bits: it increases the number of random bits that
are necessary by a factor of k.

A beautiful technique developed independently by Cohen & Wigderson [CW89]
and Impagliazzo & Zuckerman [IZ89] achieves the same error-reduction by only pay-
ing O(k) additional bits (as opposed to a multiplicative factor of k). The idea is
simple yet very powerful: rather than choosing the randomness for each execution
independently, choose them by taking a random walk on an expander graph. Since
expander graphs are very sparse, the description of a random walk uses very few
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random bits – indeed, if the graph has constant degree, then each of the k steps costs
only O(1) bits (to specify a random neighbor). Moreover, because expander graphs
are very well-connected (despite being sparse) a random walk behaves in many ways
like a walk on the complete graph (i.e., as if we used truly independent randomness
for each execution). In particular, the error of the resulting algorithm can still be
shown to be 2−Ω(k).

To implement this error-reduction efficiently, however, one needs very explicit
constructions expander graphs that can be navigated in polynomial-time. While a
highly non-trivial challenge of its own, a variety of such constructions are known
[Mar73, GG81, LPS88, RVW02], and such constructions are essential to the results
of [CW89, IZ89].

In Chapter 3, we address the problem error-reduction in complexity classes below
polynomial-time, such as NC1 – that is, the class of functions computable by poly-
nomial size formulae (or equivalently, computable in parallel time O(log n)). Indeed,
the approach of [CW89, IZ89] does not yield error-reduction for NC1 since there is
no known family of expander graph that is constructible in NC1.

In spite of this, we construct a sampler that matches the parameters of random
walks on expander graphs and is computable in NC1. In fact, our sampler is com-
putable by constant-depth circuits that are even weaker than NC1, and thus we
obtain randomness-efficient error reduction not only for NC1 but for a variety of
classes below NC1 (all the way down to AC0, i.e. constant-depth circuits).

Samplers also have applications beyond error-reduction, and indeed we apply our
sampler to obtain new derandomizations of constant-depth circuits, efficient random-
ness extractors and an optimally-efficient ε-biased generator, i.e. a generator that fool
linear functions over F2.

Derandomized Hardness-Amplification

Remarkably, the applications of pseudorandom generators are not confined simply
to questions of algorithmic derandomization. This is in part because randomization
is not only a (seemingly) powerful algorithmic resource, but also a powerful resource
in the analysis of algorithms and computation. Thus, we may sometimes use pseu-
dorandomness in order to derandomize the analysis of some computational task.

The principal such application we shall consider is hardness amplification, i.e.
the task of transforming mildly-hard computational problems into extremely hard
problems. Specifically, we are interested in transforming problems that cannot be
solved on more than a 1 − δ fraction of inputs into problems that cannot be solved
on more than 1/2 + ε fraction of inputs for the smallest δ and ε possible. While this
may seem counter-productive at first, such transformations are an important part of
understanding the landscape of computational complexity. For example, it would be a
major achievement to show that if P 6= NP (i.e., polynomial-time algorithms cannot
solve SAT on more than a 1 − 1/2n fraction of n-variable Boolean formulae) then
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there exists languages in NP that cannot be solved (by polynomial-time algorithms)
on more than a 90% fraction of instances. Indeed, the security of most cryptographic
protocols requires not only that P 6= NP, but moreover that there exist functions in
NP that cannot be solved on the average, over randomly chosen inputs. It is therefore
natural to ask whether whether the assumption that P 6= NP implies the existence
of NP problems that are hard on average – that is, does worst-case hardness of NP
implies average-case hardness of NP? Along with proving that P 6= NP, establishing
(or refuting) such a worst-case/average-case equivalence for NP is among the most
important questions about the complexity of the class NP.

Although a variety of recent results suggest that proving such an equivalence is
still beyond the reach of current complexity-theoretic techniques, in Chapter 4 we
demonstrate that a powerful hardness amplification is indeed feasible within NP.

For instance, we show that if there is a random distribution of Boolean formulae
on n variables for which no circuit can decide SAT with probability better than 99%,
then there is in fact a random distribution of Boolean formulae on n variables for
which no circuit can decide SAT with probability better than 1/2+ ε(n) for a rapidly
vanishing function ε(n). Prior to this work, O’Donnell [O’D04] had proven such a
result for ε(n) ≈ 1/n. Our techniques improve this to ε(n) ≈ 1/2

√
n which is just

short of the optimal value, ε(n) ≈ 1/2n.
One of the main tools in our approach is a pseudorandom generator that fools a

seemingly weak model of computation (i.e., small-space algorithms). Roughly speak-
ing, we show that the outputs of this relatively weak pseudorandom generator still
behave like random inputs for certain structured NP functions that arise naturally
in O’Donnell’s hardness amplification. Thus, a random (and very short) seed for
the generator can encode a very large pseudorandom (and hence extremely difficult)
instance of this NP problem. This has the effect of shrinking the input length of
the function (since we need only specify the seed, and not the entire input), while
preserving its hardness. Put another way, we dramatically increase the hardness (as
measured as a function of the input length), as desired.

Since the pseudorandom generator we use is unconditional, this can all be achieved
without employing any unproven complexity assumptions (beyond the initial hypoth-
esis that NP has mildly average-case hard problems).

1.2 Structure of the Thesis

Chapter 2: Preliminaries This chapter reviews the basic definitions of ε-biased
generators, k-wise independent generators, expander graphs and circuit classes.

Chapter 3: Randomness-Efficient Sampling within NC1 A fundamental
pseudorandom object is the expander graph. Roughly speaking, expander graphs are
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explicit graphs that share many characteristics with random graphs – in particular,
they are very sparse while at the same time being very well-connected.

Expanders are used throughout theoretical computer science, and one powerful use
of expanders is randomness-efficient sampling: that is, in many applications where
one needs k uniform and independent samples from a universe of size N , one may
actually substitute k (dependent) samples chosen according to a random walk on a
constant-degree expander graph of size N .

On the surface, a random walk on an expander graph seems like an inherently
sequential process. A natural question, therefore, is whether the wealth of expander-
based techniques from the literature can be applied within parallel models of com-
putation. We address this question by giving a highly-parallel implementation of a
sampler that matches the parameters of expander walks.

We can then apply this sampler to obtain a variety of new derandomizations of
highly-parallel algorithms. In addition, the analysis of our sampler involves proving
new, stronger pseudorandomness properties of expander walks.

Chapter 4: Derandomized Hardness Amplification within NP In this chap-
ter we show that if NP has a balanced function that is hard to compute on a non-
negligible fraction of inputs, then NP contains a function that is hard to compute
with more than exponentially small advantage over random guessing. This improves a
results of O’Donnell [O’D04], which only produces functions that are hard to compute
with advantage 1/

√
n.

O’Donnell also proved that no construction of a certain general form could amplify
much beyond the hardness achieved by his construction. We bypass this barrier by
using both derandomization and nondeterminism in the construction of f ′.

We also prove impossibility results demonstrating that both our use of nondeter-
minism and the hypothesis that f is balanced are necessary for “black-box” hardness
amplification procedures.

Chapter 5: Constant-Depth Circuits for Finite Field Arithmetic Finite
fields have a wide variety of applications in computer science, and in this chapter we
study the complexity of arithmetic operations in finite fields. Specifically, we focus
on finite fields of characteristic two; that is, finite fields F2n having 2n elements, and
the question we address is: To what extent can basic field operations (in particular,
multiplication and exponentiation) in these fields be computed by constant-depth
circuits? We demonstrate a variety of highly-parallel algorithms for arithmetic in
these fields, many of which can also be proved to be optimal.

One of the original motivations for this work was to understand the complexity
of certain pseudorandom generators, namely k-wise independent and ε-biased gener-
ators. Indeed, our results allow us to give constant-depth implementations of optimal
constructions of k-wise independent and ε-biased generators, addressing questions
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raised by Gutfreund and Viola [GV04].
Our results have other consequences as well: For instance, we also prove that uni-

form threshold circuits are equal to the class AE of functions computable by certain
arithmetic expressions, thereby answering a question raised by Frandsen, Valence and
Barrington [FVB94].



Chapter 2

Preliminaries

Notation: For a positive integer n, we denote the set {1, . . . , n} by [n].

2.1 ε-Biased Sets and Generators

Small-biased spaces appear in several ways in this thesis. In Chapter 3, poly-size
ε-biased sets are used to construct expander graphs on which our sampler construction
is based (Lemma 3.2.1). In Chapters 3 and 5 we also address the task of building
exponential-size ε-biased sets that are (very efficiently) bitwise computable (see the
definition below, Corollary 3.1.7 and Theorem 5.2.13).

Definition 2.1.1. For a, b ∈ Zm
2 , let 〈a, b〉2 denote the inner product of a and b

modulo 2.
A multi-set S ⊆ Zm

2 is ε-biased if for all non-zero y ∈ Zm
2 , Prx∈S [〈x, y〉2 = 1] ∈

[1/2− ε, 1/2 + ε].
An ε-biased generator is a function g : {0, 1}` → {0, 1}m such that the multi-set

{g(s) | s ∈ {0, 1}`} is an ε-biased multi-set.
A bitwise ε-biased generator is a function g : {0, 1}` × [m] → {0, 1} such that the

function g′(s) = (g(s, 1), g(s, 2), . . . , g(s,m)) is an ε-biased generator.

2.2 k-wise Independent Generators

Another important generator is the k-wise independent generator:

Definition 2.2.1. For z ∈ {0, 1}m and I ⊆ [m], let z|I ∈ {0, 1}|I| denote the projec-
tion of z on the bits specified by I.

A k-wise independent generator is a function g : {0, 1}` → {0, 1}m such that for
every M : {0, 1}k → {0, 1} and I ⊆ [m] such that |I| = k:

Pr
y∈{0,1}k

[M(y) = 1] = Pr
x∈{0,1}s

[M(G(x)|I) = 1].

9
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2.3 Expander Graphs

Informally, expander graphs are sparse-yet-highly-connected graphs. While there
are a variety of equivalent notions of graph expansion (see, e.g., [AS00, Gol99, HLW06]),
it is most convenient for us to work with the following spectral definition.

Definition 2.3.1. Let G be a regular directed graph1 on N nodes with transition
matrix P , and let u = (1/N, . . . , 1/N) ∈ RN denote the uniform distribution on G.
We say that G is a λ-expander if

max
x∈RN

〈x,u〉=0

‖Px‖
‖x‖ ≤ λ.

When G is undirected, this definition is equivalent to the second-largest eigenvalue
of P being at most λ in absolute value – see, e.g., [Mih89, Fil91].

We often abuse language and refer to an “λ-expander”, when we really mean a
“family of λ(n)-expanders of size s(n)” for some function s(n). Also, when we simply
refer to an “expander graph”, without mention of λ, it is understood that we mean a
family of λ-expanders for some constant λ < 1.

By a random walk on a d-regular graph G, we mean the following process: choose
a random starting vertex v0 ∈ G, and for i = 1, . . . , k, let vi be a uniformly random
neighbor of vi−1 in G and output v1, . . . , vk. Note that we are discarding the starting
vertex v0, although it is easy to see that the distribution is unchanged even if we keep
v0. We prefer this convention as it simplifies our notation and presentation. We also
note that such a walk is described by a tuple (v0, s1, . . . , sk) ∈ [|G|]× [d]× · · · × [d],
and hence by a string of log |G|+ O(k log d) bits.

2.4 Circuits

In addition to standard Boolean circuits (over the basis AND, OR, NOT), this
thesis considers a variety of restricted circuit classes. Below we recall the basic defi-
nitions of these classes as well as the relationships between them.

Recall that NC1 denotes the class of functions f : {0, 1}n → {0, 1} computable
by circuits of size poly(n) and depth O(log n) over the basis {∧,∨,¬} (where all the
gates have fan-in 2).

We also consider three classes of unbounded fan-in constant-depth circuits of poly-
nomial size:

• AC0 : The class of circuits having AND and OR gates of unbounded fan-in,
NOT gates and depth O(1).

1A directed graph is d-regular if the in-degree and out-degree of every node is equal to some fixed
d, and a directed graph is regular if it is d-regular for some d.
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• AC0[⊕] : The class of circuits having AND, OR and XOR gates of unbounded
fan-in, NOT gates and depth O(1).

• TC0 : The class of circuits having AND, OR and MAJORITY gates of un-
bounded fan-in, NOT gates and depth O(1).

We will routinely abuse language and refer to functions f that can be computed by
AC0 (respectively AC0[⊕] and TC0) circuits (of a certain size s); by this we simply
mean that, given x and i ≤ |f(x)|, computing the i-th bit of f(x) can be performed
by AC0 (resp. AC0[⊕] and TC0) circuits (of size s).

Unless explicitly stated otherwise, all circuits are of polynomial size and uniform.
When referring to the uniformity of a family of circuits, we mean the complexity
of the uniform algorithm that “constructs” the n-th circuit, given input n. When
working with constant-depth circuits, the issue of uniformity can be a delicate one.
Nonetheless, there is a single notion of uniformity that is generally accepted to be the
most appropriate for these classes, namely Dlogtime-uniformity. A detailed descrip-
tion of Dlogtime-uniformity can be found in [BIS90] (see also [Vol99]); below we give
a more informal description.

A family of circuits {Cn}∞n=1 of size s(n) is said to be Dlogtime-uniform if there
exists a random-access Turing machine that:

• On input n and i ≤ s determines in time O(log n+log i) the type of gate i (e.g.,
AND, OR, NOT, XOR, MAJ) in the circuit Cn.

• On input n and i, j ≤ s decides in time O(log n + log i) whether the output of
gate i is joined to the input of gate j in the circuit Cn.

This restrictive notion of uniformity is more than adequate to ensure that the
class of functions computed by uniform poly(n)-size TC0 circuits is contained in
logarithmic space.

When referring to non-uniform circuits, we always indicate this explicitly using
slash notation: for example, AC0/O(n) is the class of boolean functions f : {0, 1}n →
{0, 1} such that there exists a Dlogtime-uniform AC0 circuit family Cn : {0, 1}n ×
{0, 1}O(n) → {0, 1} for which there is a single advice string an of length O(n) such
that Cn(x, an) = f(x) for all x ∈ {0, 1}n.

The probabilistic classes BP · AC0,BP · AC0[⊕],BP · TC0 and BP ·NC1 are
all defined in the natural way: the circuit takes two inputs, one of n bits and one
of r(n) random bits for some polynomially-bounded function r(n), and for any fixed
input x ∈ {0, 1}n, the circuit should correctly compute the function with probability
at least 2/3 over the r(n) random bits.

Recall that AC0 ( AC0[⊕] ( TC0 ⊆ NC1 ⊆ L, where the last inclusion
holds under logspace uniformity and the separations follow from works by Furst et
al. [FSS84] and Razborov [Raz87], respectively (and hold even for non-uniform cir-
cuits). Despite these lower-bounds, AC0 can compute the approximate majority of
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n bits [Ajt93] – in particular, for any constant ε > 0, there exists a family of AC0

circuits that correctly computes the majority function for all inputs with at most a
n/2− εn ones and for all inputs with at least n/2 + εn ones.

Scaling Down TC0: It is well-known that uniform poly(n)-size AC0 circuits can
compute the MAJORITY function on polylog(n) bits. In particular, this means that
any problem that is solved by uniform poly(n)-size TC0 circuits on inputs of length
n can, on inputs of length polylog(n), be solved by uniform poly(n)-size AC0 circuits
that simulate the MAJORITY gates of the TC0 circuits. We will use these facts
frequently and will often simply refer to “scaling down” a given family of uniform
TC0 circuits to obtain the appropriate uniform AC0 circuits. For example, since both
iterated integer multiplication of n n-bit numbers and division of n-bit numbers are in
uniform poly(n)-size TC0 [HAB02], we have the following lemma about performing
these operations by uniform AC0 circuits.

Lemma 2.4.1 ([HAB02], Theorem 5.1). For every constant c > 1, the following can
be computed by Dlogtime-uniform AC0 circuits of size poly(n):

• Given integers a1, a2, . . . , alogc n, each of length at most logc n bits, compute∏
i≤logc n ai.

• Given integers a, b, each of length at most logc n bits, compute ba/bc.
Additional background on constant-depth circuits can be found in, e.g., [H̊as87,

Vol99].



Chapter 3

Randomness-Efficient Sampling
within NC1

3.1 Introduction

Over the last three decades, expander graphs have found a wide variety of appli-
cations in Theoretical Computer Science. They have been used in designing novel
algorithms (e.g., [AKS83], [Rei05]), in the study of circuit complexity (e.g., [Val77],
[IW97]) and to derandomize probabilistic computation (e.g., [CW89], [IZ89]), just to
name a few notable examples from this vast literature.

Many of these applications involve a random walk on an expander. That is, we
choose a random starting node v in an expander graph G, take a k-step random
walk and use the k nodes visited by this walk in some way – often as a substitute
for k independently-chosen nodes. Despite its simplicity, this processes has some
remarkable sampling properties which we discuss shortly. For the moment, we address
the computational efficiency of expanders walks.

3.1.1 The Complexity of Walks on Expander Graphs

In applications, one often requires an expander graph that is exponentially large,
say on 2n nodes. In this case, a random walk on the graph is performed using
a strongly explicit representation – that is, a representation in which each node is
identified with an n-bit string and it is possible to efficiently (e.g., in time poly(n))
find all the neighbors of a given node v ∈ G. Several beautiful constructions [Mar73,
GG81, LPS88, RVW02] are known of such explicit constant-degree expander graphs
of exponential size.

At first glance, the act of taking a random walk on an expander graph seems like
an inherently sequential process – indeed, each step of the walk seems to rely on the
previous step in an essential way. A natural question, therefore, is whether the wealth
of expander-based techniques from the literature can be applied within highly-parallel

13
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models of computation, such as log-depth circuits (i.e., NC1) or even constant-depth
circuits.

The main technical contribution of this chapter is a sampler that is just as good
as a random walk on an expander graphs (in a sense that is made precise in the
next section), but which is computable in parallel time O(log n), i.e. computable by
uniform NC1 circuits. In fact, our sampler is computable by uniform constant-depth
circuits with parity gates (i.e. AC0[⊕]), a class that is strictly weaker than NC1 as
it cannot even compute the majority of n bits [Raz87].

3.1.2 The Properties of Walks on Expander Graphs

We now discuss the important sampling properties of random walks on expander
graphs in order to better understand what properties we require of our sampler. A
more formal definition of expander graphs is given in Section 2.3, but for the moment
the reader may simply think of an expander graph as a constant-degree undirected
graph, G, that is “highly-connected”.

A fundamental sampling property of expander walks is the hitting property, first
shown by Ajtai, Komlós and Szemerédi [AKS87]:

The Hitting Property: For any subset S of half the nodes of G, the probability
that a k-step random walk never visits a node in S is at most 2−Ω(k).

This hitting property is quite useful (e.g., to reduce the error of RP algorithms),
but some applications require an even stronger property, which we call the strong
hitting property:

The Strong Hitting Property: For any sequence of subsets S1, . . . , Sk, each
consisting of half the nodes of G, the probability that a k-step random walk does not
pass through Si on the i-th step for any i ∈ {1, . . . , k} is at most 2−Ω(k).

It turns out that this strong hitting property is what is necessary for the randomness-
efficient error reduction techniques of [CW89] and [IZ89], the amplification technique
of [GIL+90] and for the derandomized XOR Lemma of [IW97].

Clearly, the strong hitting property is a generalization of the (non-strong) hitting
property. Another natural generalization of the hitting property is the following, first
proved by Gillman [Gil94]:

The Chernoff Bound for Expander Walks: For any subset S of half the
nodes of G, the fraction of time that a k-step random walk spends in S is 1/2 ± ε
with probability 1− 2−Ω(ε2k).

This Chernoff Bound is quite powerful and has applications to constructing ran-
domness extractors (see [Zuc97]) and to Markov-Chain Monte Carlo algorithms (see
[Gil94]). Although, it is not clear that it subsumes the strong hitting property. The
following property, however, generalizes both the strong hitting property and the
Chernoff bound:

The Strong Chernoff Bound for Expander Walks: Fix a sequence of subsets
S1, . . . , Sk, each consisting of half the nodes of G. Then for a k-step random walk on
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G, the fraction of indices i such that the i-th step of the walk lands in Si is 1/2 ± ε
with probability 1− 2−Ω(ε2k).

Thus, the Strong Chernoff Bound for Expander Walks subsumes all the aforemen-
tioned sampling properties, and it seems to represent the essential abstract property
of random walks on expanders that is necessary for most natural applications. This
bound has only been proved recently – it follows from the work of Wigderson and
Xiao [WX05].1

In Section 3.4, we give a direct and elementary proof of the Strong Chernoff
Bound for Expander Walks (Theorem 3.1.1). In contrast to most of the proofs in this
area, our proof uses only basic linear algebra and, in particular, does not require any
perturbation theory or complex analysis in order to obtain a bound that matches the
parameters of Gillman’s (non-strong) Chernoff bound.2 Since this bound is important
to our analysis, we give a formal statement before describing our results in more detail.
(In the following, a λ-expander is a regular graph whose normalized second-largest
eigenvalue (in absolute value) is at most λ – see Section 2.3 for a precise definition.)

Theorem 3.1.1 (Implicit, up to constants, in [WX05]). Let G be a regular λ-expander
on V and fix a sequence of functions fi : V → [0, 1] each with mean µi = Ev[fi(v)].
If we consider a random walk v1, . . . , vk on G, then for all ε > 0,

Pr

[∣∣∣∣∣
k∑

i=1

fi(vi)−
k∑

i=1

µi

∣∣∣∣∣ ≥ εk

]
≤ 2e−

ε2(1−λ)k
4 .

In particular, by taking the functions fi to be the characteristic functions of the
sets Si we obtain the Strong Chernoff Bound for Expander Walks (informally) stated
above.

We also give a multiplicative form of the Chernoff bound (Corollary 3.4.5) that is
sharper than Theorem 3.1.1 when the sets we are sampling is small (i.e., when the µi

are small in the notation of Theorem 3.1.1). While Kahale [Kah97] has also improved
Gillman’s Chernoff bound in this setting, his techniques only address the case of
sampling a single set; i.e., they give a non-strong Chernoff bound. As a corollary to
the proof of Theorem 3.1.1, we obtain a strong Chernoff bound that improves upon
Theorem 3.1.1 when the µi and λ are small (see Corollaries 3.4.5 and 3.4.6).

1Although a subsequent manuscript of Wigderson and Xiao [WX06] points out an error in [WX05],
this only affects the case of sampling d-dimensional matrices for d ≥ 2. Their proof remains valid
for the case of sampling 1-dimensional matrices, which is all that is needed for the Strong Chernoff
Bound stated here.

2[WX05] also gives a proof of a (strong) Chernoff bound using no perturbation theory but this
bound does not match Gillman’s. In particular, Theorem A.1 of [WX05] has a cubic dependence on
the spectral gap 1 − λ in the exponent, as opposed to the (optimal) linear dependence; moreover,
even when the spectral gap 1−λ is constant, the dependence on ε is (slightly) worse than quadratic.
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3.1.3 Our Sampler

Our main result is the construction of a sampler that is computable by AC0[⊕]
circuits and possesses all the “sampling properties” of a random walk on a constant-
degree expander graphs of size 2n. To make this notion precise, we recall the following
definition (essentially from [Zuc97]):

Definition 3.1.2. A function Γ : {0, 1}m → ({0, 1}n)k is said to be a strong (γ, ε)-
averaging3 sampler if: for any sequence of functions fi : {0, 1}n → [0, 1] each with
mean µi = Ex[fi(x)],

Pr
s

[∣∣∣∣∣
k∑

i=1

fi(Γ(s)i)−
k∑

i=1

µi

∣∣∣∣∣ ≤ εk

]
≥ 1− γ.

We call m the seed-length of the sampler, and we call k the sample complexity of the
sampler.

It is not hard to check that Theorem 3.1.1 implies that a random walk on a
constant-degree expander (where λ is a constant less than 1) of size 2n is a strong
averaging sampler with seed-length m = n + O(log(1/γ)/ε2) and sample complexity
k = O(log(1/γ)/ε2). Moreover, this sample complexity is known to be optimal up to
constant factors, and when ε = Ω(1) the seed-length is also optimal up to constant
factors [CEG95]. Our main theorem is that uniform AC0[⊕] can compute a sampler
that is just as good:

Theorem 3.1.3. There exists a strong (γ, ε)-averaging sampler Γ : {0, 1}m → ({0, 1}n)k

with seed-length m = n + O(log(1/γ)/ε2) and sample complexity k = O(log(1/γ)/ε2)
such that Γ is computable by uniform AC0[⊕] circuits of size poly(n, 1/ε, log(1/γ)).

On the one hand, Theorem 3.1.3 is superior to a random walk of length k on a
constant-degree expander of size 2n in the very low computational complexity of Γ;
indeed, we do not know of any constant-degree expander walks computable in such
low complexity. On the other hand, the sampler of Theorem 3.1.3 is potentially a
weaker object than an expander walk: there may exist applications of expander walks
in which one cannot simply substitute an arbitrary sampler. We note, however, that
many applications of expander walks rely only on the fact that an expander walk is a
good sampler; thus, when computational complexity is of the essence, we may employ
our sampler in lieu of the expander walk.

As discussed in Section 3.2.1, the proof of Theorem 3.1.3 relies upon the zig-zag
graph product of [RVW02] to build a sampler in AC0[⊕]. In Section 3.2.3, we also
mention an alternate construction of a sampler in AC0[⊕] that is inspired by the
paradigm of sampler composition [BGG93, Gol97].

3[Zuc97] uses the term “oblivious sampler”. We follow [Gol97] and use the more-accurate “aver-
aging sampler”.
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Gutfreund and Viola have shown [GV04] that walks on the Margulis/Gabber-Galil
expander graph [Mar73, GG81] with 2n nodes are computable in space O(log n) (and
therefore that logspace has strong samplers that match the parameters of Theorem
3.1.3). To the best of our knowledge, ours is the first work that implies the exis-
tence of such strong samplers within the class NC1 of log-depth circuits; in fact, our
construction is in the strictly-weaker class AC0[⊕] ( TC0 ⊆ NC1 ⊆ L.

Since expander walks are a powerful and widely-applicable tool it is not surprising
that our sampler construction should have a variety of applications. Indeed, we apply
our construction to obtain the new results described in the remainder of this section.

Randomness-Efficient Error Reduction within NC1 One important applica-
tion of random walks on expander graphs is in reducing the error of probabilistic
algorithms. Such error reduction was achieved for BPP by Cohen and Wigderson
[CW89] and Impagliazzo and Zuckerman [IZ89]. Bar-Yosef, Goldreich and Wigderson
[BYGW99] show how to achieve modest-but-optimal error reduction for probabilistic
logspace (i.e., the class BPL); this is accomplished by a careful implementation of
short random walks the Margulis/Gabber-Galil expander that can be computed with
one-way access to the random bits describing the walk. In contrast, Gutfreund and
Viola [GV04] show how to compute long random walks on the Margulis/Gabber-Galil
expander when given two-way access to the random bits describing the walk – this
implies randomness-efficient error reduction for the class BP · L.4 As an applica-
tion of our sampler construction, we obtain analogous error-reduction for a variety of
classes below logspace (see Section 2.4 for the definitions of BP ·NC1, BP ·TC0 and
BP ·AC0[⊕]):

Corollary 3.1.4. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-
size uniform BP ·AC0[⊕] (respectively, BP ·TC0 or BP ·NC1) circuits with error
at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has
polynomial-size uniform BP ·AC0[⊕] (respectively, BP ·TC0 or BP ·NC1) circuits
with error at most δ using r + O(log(1/δ)) random bits.

Combining our sampler with Nisan’s unconditional pseudorandom generator for
constant-depth circuits [Nis91], we obtain an even stronger result for BP ·AC0 (see
Section 2.4 for the definition of BP ·AC0):

Corollary 3.1.5. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-
size uniform BP ·AC0 circuits with error at most 1/3 using r = r(n) random bits.

4BP ·L refers to probabilistic logspace computation that allows for two-way access to the random
bits, whereas the result of Bar-Yosef et al. concerns the standard model of probabilistic logspace
computation (i.e. BPL), which only allows one-way access to the random bits. See the survey of
Saks [Sak96] for a discussion of the subtleties surrounding different notions of probabilistic space-
bounded computation.
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Then for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size uniform BP · AC0

circuits with error at most δ using min{r, polylog(n)}+ O(log(1/δ)) random bits.

Derandomization with Linear Advice Recently, Fortnow and Klivans [FK06]
have proved that RL ⊆ L/O(n) – that is, one can derandomize probabilistic logspace
computation at the cost of only a linear amount of non-uniform advice. Their ap-
proach is based on a clever combination of Nisan’s pseudorandom generator for space-
bounded computation [Nis92] and the logspace expander walks of Gutfreund and
Viola [GV04]. Our techniques yield an analogous result for uniform probabilistic
constant-depth circuits:

Corollary 3.1.6. uniform BP ·AC0 ⊆ uniform AC0/O(n).

Ajtai & Ben-Or [ABO84] show that nonuniform BP · AC0 = nonuniform AC0;
however, even for derandomizing uniform BP · AC0 [Ajt93] their technique seems
to require an arbitrary polynomial amount of non-uniform advice. Corollary 3.1.6
quantifies the amount of nonuniformity that is necessary to derandomize a proba-
bilistic AC0 circuit, and therefore can be viewed as a refinement of their result. The
same approach, together with a new pseudorandom generator of Viola [Vio05b], yields
similar results for circuits with a bounded number of parity or majority gates – see
Corollary 3.3.1 in Section 3.3.2.

An Optimal Bitwise ε-Biased Generator in AC0[⊕] Gutfreund and Viola
[GV04] study the complexity of constructing bitwise5 ε-biased generators (see Def-
inition 2.1.1). They give a construction in uniform AC0[⊕] whose seed-length is
optimal for ε = Ω(1/ poly log log(m)) (where m is the number of output bits) and
sub-optimal for smaller ε. Healy and Viola [HV06] give an optimal construction in
uniform TC0 and a sub-optimal construction in uniform AC0[⊕] whose parameters
are incomparable to those of [GV04]. In this chapter, we resolve this question entirely
– using our sampler (and [NN90, GV04]), we construct an optimal bitwise ε-biased
generator in uniform AC0[⊕]:

Corollary 3.1.7. For every ε > 0 and m, there is an ε-biased generator G : {0, 1}n →
{0, 1}m with n = O(log m + log(1/ε)) such that uniform AC0[⊕] circuits of size
poly(n, log m) = poly(n) can compute G(s)i given (s, i) ∈ {0, 1}n × [m].

It is known that ε-biased generators require seed length at least Ω(log m+log(1/ε))
[AGHP92], and it can be shown that bitwise ε-biased generators achieving the pa-
rameters of Corollary 3.1.7 require AC0 circuits of exponential size [GV04, MNT90].
Therefore, the construction of Corollary 3.1.7 is tight both in terms of seed-length
and computational complexity.

5[GV04] calls such generators explicitly computable.
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3.1.4 Organization

The remainder of this chapter is organized as follows. In Section 3.2 we prove
Theorem 3.1.3 and also describe an alternate sampler construction. The proofs of
the applications described above can be found in Section 3.3. Section 3.4 is devoted
to proving Theorem 3.1.1 as well as an alternate Chernoff bound, and some open
questions are discussed in Section 3.5.

3.2 The Sampler Construction

In this section, we describe our sampler construction and prove Theorem 3.1.3.
Recall that our goal is to construct a sampler Γ : {0, 1}m → ({0, 1}n)k that matches
the parameters of random walks on expander graphs. Naturally, one way to achieve
this would be to exhibit a family of constant-degree expander graphs on 2n nodes
and show that walks of length k on these expanders can be computed in AC0[⊕]
of size poly(n, k). Unfortunately, we do not know of any such family of expanders.6

Instead, we begin with a family of expander graphs of degree poly(n) where walks are
computable in AC0[⊕] – note that a walk of length k on such a graph is described by
a seed of length n+O(k · log n) – and then we derandomize the walk on this graph to
achieve the optimal seed length n + O(k). This derandomization uses random walks
on a smaller expander graph, and its analysis is based on the zig-zag graph product
of [RVW02].

In the sequel, we focus on the case where k = Ω(log n) since by [GV04] it is known
that AC0 circuits can compute walks of length log n on the Margulis/Gabber-Galil
graph of size 2n.

3.2.1 The Construction

Our first graph, G, is a Cayley graph on the group Zn
2 . Specifically, we construct

a 1/n-biased set S ⊂ Zn
2 of size poly(n) (see Definition 2.1.1) and let {v, w} be an

edge if and only if v ⊕ w ∈ S. The following well-known fact guarantees that G has
second-largest eigenvalue at most 2/n (e.g., see [AR94]).

Lemma 3.2.1. A Cayley graph on Zn
2 with generators S ⊂ Zn

2 is a 2ε-expander if
and only if S is ε-biased.

Before continuing, let us see how walks on G can be computed in AC0[⊕]. First,
we note that a 1/n-biased set S of size poly(n) can be constructed in AC0. For

6Indeed, Gutfreund and Viola [GV04] observe that AC0[⊕] cannot compute walks on the
Margulis/Gabber-Galil expander, and the same argument can easily be extended to rule out the
possibility of AC0[⊕] circuits that compute walks on a variety of other natural expander graphs.
Nevertheless, it does seems plausible that AC0[⊕] circuits could compute walks on some constant-
degree expander family – see the discussion in Section 3.5.
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instance, we may use the “Powering Construction” of an ε-biased generator from
[AGHP92] together with the results on field arithmetic of [HV06].7 (Note that for
a non-uniform construction, we could simply hard-wire such an ε-biased set into the
circuit.)

Next, we observe that the neighbors of a node v ∈ {0, 1}n are the nodes {v⊕g(s) |
s ∈ {0, 1}`}, where g : {0, 1}` → {0, 1}n is the ε-biased generator defining the ε-biased
set S and ` = O(log n). Thus, a random walk starting at v is obtained by letting
v0 = v and vi = vi−1 ⊕ g(si) for randomly chosen seeds si ∈ {0, 1}`, and in particular

vi = v0 +
i⊕

j=0

g(sj).

Hence, given the description a walk (v, s1, . . . , sk) ∈ {0, 1}n×{0, 1}`×· · ·×{0, 1}`,
to determine the i-th vertex visited by the walk, the circuit need only compute from
each seed sj (in parallel) the appropriate vector g(sj) ∈ S and then compute the sum
v +

⊕i
j=1 g(sj). This is clearly computable by AC0[⊕] circuits of size poly(n, k). In

fact, the parity gates only appear at the outputs and each parity has fan-in at most
k + 1.

Now we turn to the problem of producing a pseudorandom sequence of steps sj,
with the goal of reducing the seed length of a walk on G, while at the same time
preserving the sampling properties of such walks. Our approach is motivated by the
zig-zag product of Reingold, Vadhan and Wigderson [RVW02]. Roughly speaking,
one may interpret their results as saying the following: to derandomize a walk on a
graph G of degree d, it suffices to choose the steps in G according to a random walk
on a constant-degree expander graph H of size d. (For technical reasons, their result
requires the graph H to be the square of an expander graph, but we ignore this for
the moment.) Specifically, to take a pseudorandom k-step walk in G:

1. Choose a random starting vertex v0 ∈ G.

2. Choose a random w0 ∈ H and take a random walk of length k on H, visiting
nodes w1, . . . , wk.

3. View w1, . . . , wk as indices in [d] (recalling that |H| = d).

4. Use w1, . . . , wk as the steps of a walk (starting at v0) in G.

5. Output the nodes v1, . . . , vk ∈ G visited by the walk from Step 4.

7Specifically, let m = log n (assuming that log n is an integer for simplicity) and consider the
finite field F22m with 22m elements (viewed as the ring of polynomials over F2 modulo an irreducible
polynomial of degree 2m). The generator outputs 24m = n4 vectors vα,β of dimension 2m = n,
indexed by pairs of elements α, β ∈ F22m , where the i-th bit of vα,β is given by 〈αi, β〉2. It is shown
in [AGHP92] that such a generator has bias less than 2m/22m = 1/n, and it is shown in [HV06] that
all the necessary field arithmetic can be carried out in uniform AC0 of size poly(n) for this range
of parameters.
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Note that the seed length of such a sampler is |v0|+(|w0|+O(k)) = n+log |H|+O(k) =
n + O(k) (since we assume k = Ω(log n)), as desired. Moreover, one can show (using
the results of [RVW02]) that the forgoing construction is a strong averaging sampler.
What is not clear, however, is how to compute this sampler in AC0[⊕]. The reason
is that it requires a long walk on the graph H, and while H is small (only poly(n)
nodes) compared to G (which has 2n nodes), we do not know how to take such a long
walk (on any constant-degree expander family) in AC0[⊕], or even in NC1 for that
matter.

In order to circumvent this obstacle, we derandomize the walk on G by using
many short walks on H, rather than a single long walk.

Construction 1.

1. Choose a random starting vertex v0 ∈ G.

2. Take k/ log n independent random walks each of length log n in H, where the

i-th walk visits w
(i)
1 , . . . , w

(i)
log n ∈ H.

3. View w
(1)
1 , . . . , w

(1)
log n, w

(2)
1 , . . . , w

(2)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as indices in [d].

4. Use w
(1)
1 , . . . , w

(1)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as the steps of a walk (starting

at v0) in G.

5. Output the nodes v1, . . . , vk ∈ G visited by the walk from Step 4.

This sampler has seed length |v0| + (k/ log n) · (log |H| + O(log n)) = n + O(k)
(again, since we assume that k = Ω(log n)). Furthermore, we show below that this
construction is a strong averaging sampler, achieving the same parameters as a ran-
dom walk on a constant-degree expander graph. Before proving this, however, we
observe that this walk is computable in AC0[⊕]. Indeed, it is known how to compute
walks of length O(log n) on poly-sized explicit expanders of constant degree in AC0

[Ajt93, GV04],8 and thus each of the five steps above is computable in constant depth.

3.2.2 The Analysis

We now show that Construction 1 is a strong averaging sampler. In particular,
Theorem 3.1.3 is a consequence of the following lemma:

Lemma 3.2.2. Let H = H̃2 where H̃ is a constant-degree expander graph on poly(n)
nodes. Then Construction 1 is a strong (γ, ε)-averaging sampler with seed length
n + O(log(1/γ)/ε2) and sample complexity O(log(1/γ)/ε2).

Proof. Our proof relies on the zig-zag product of [RVW02], so we briefly recall that
construction.

8As with the 1/n-biased set S above, the non-trivial issue here is the uniformity of the circuits;
if we only wish to give a nonuniform construction we could simply hard-wire all the possible walks
of length log n into the circuit.
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Zig-Zag Product Let G be a regular graph of degree d on vertices VG whose edges
are labeled with the names 1, . . . , d in such a way that no two incident edges share the
same label.9 (Note that under such a labeling, if w is the “i-th neighbor of v”, then
v is the “i-th neighbor of w” – the graph G, defined above, clearly has this property,
as it is a Cayley graph on a group of characteristic 2.) Then if g is a regular graph
on vertices Vg where |Vg| = d, we may form the zig-zag product graph G©z g where:

• G©z g has vertices VG × Vg

• {(v, w), (v′, w′)} is an edge if there is an x ∈ Vg such that (w, x, w′) is a path in
g and v′ is the x-th neighbor of v in G. (Note that the labeling condition on G
ensures this is symmetric.)

Thus, if we start at (v, w) ∈ G©z g, a step to a random neighbor (v′, w′) has following
form:

• Choose a random neighbor x of w in g.

• Set v′ to be the x-th neighbor of v in G.

• Choose a random neighbor w′ of x in g.

In particular, if we only consider the VG-coordinate of a random walk of length ` in
G©z g (starting at a random vertex), it has the same distribution as the following
process:

• Choose a random start vertex v0 ∈ VG.

• Take a random walk w1, w2 . . . , w` in g2.

• For i > 0, let vi to be the wi-th neighbor of vi−1 in G.

• Output v1, v2, . . . , v`.

Thus, each of of the segments of length k/ log n in our sampler construction corre-
sponds to a random walk on G©z H̃, projected onto the VG-coordinate. But what
about the boundaries between these segments? In this case, Construction 1 says we
choose a new, entirely-random node of H̃ and then continue the walk on G. This
is equivalent to taking a step on G©z Kd, i.e., the zig-zag product of G with a com-
plete graph (with self-loops) on d nodes. Therefore, the output of our sampler is the
projection onto the VG-coordinate of a random walk on a time-varying graph that is
G©z H̃ most of the time, and G©z Kd once every log n steps. We now show that this
output satisfies Definition 3.1.2 for the desired parameters.

First we note for any function f : VG → [0, 1] there is a natural lift of f to
f̂ : VG × VH̃ → [0, 1], defined by f̂(v, w) = f(v), and it is clear that the lift f̂ has the
same average as f . Therefore, to conclude that the projection of a random walk yields

9The zig-zag product of [RVW02] actually applies in much greater generality; however, this
simplification suffices for our application.
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a strong averaging sampler, it suffices to show that a random walk on the forgoing
time-varying graph is a strong averaging sampler. By Remark 3.4.4 (following the
proof of Theorem 3.1.1), it does not matter that the graph is varying over time:
as long as the graph is a λ-expander at every point in time, the random walk is a
good sampler. Thus, we are left with the task of showing that G©z H̃ and G©z Kd

are expanders. For this, we apply the following consequence of the main theorem of
[RVW02]:

Lemma 3.2.3 ([RVW02], Corollary to Theorem 4.3). Let G be a regular graph of
degree d whose edges are labeled with 1, . . . , d in such a way that no two incident edges
share the same label, and let g be a regular graph on d nodes. If G is a λG-expander
and g is a λg-expander, then G©z g is a (λG + λg)-expander.

By Lemma 3.2.1, G is a 2/n-expander, and by assumption H̃ is a λ-expander for
some constant λ < 1. So by Lemma 3.2.3, G©z H̃ is a (2/n + λ)-expander, i.e. a
λ′-expander for some constant λ′ < 1 (when n > 2/(1− λ)).

It is not hard to see that Kd, the complete graph (with self-loops) on d nodes,
is a 0-expander, and therefore by Lemma 3.2.3, G©z Kd is a (2/n)-expander, i.e. a
λ′′-expander for some constant λ′′ < 1 (when n > 2).

Thus our sampler stretches a seed of length n + O(k) into k samples (of n bits
each) that satisfy the bound from Theorem 3.1.1 for some constant λ < 1. Specifically,
the sampler approximates the mean of the fi’s with error ε and confidence 1 − γ =
1 − e−Ω(ε2k); in other words, the seed length is n + O(k) = n + O(log(1/γ)/ε2) and
the sample complexity is k = O(log(1/γ)/ε2). Lemma 3.2.2 follows.

3.2.3 An Alternate Sampler Construction

In this section we describe an alternate implementation of a sampler in AC0[⊕].
While this construction uses many of the same tools as Construction 1, the funda-
mental approach is different and is inspired by the paradigm of sampler composition
[BGG93, Gol97], rather than the zig-zag graph product.10

Recall that Construction 1 employed short walks on a small expander, H, to select
the steps to be made in the large expander G. Thus, H was used to derandomize the
long walk on G. For the present construction, however, we shall instead use a long
walk on a large auxiliary graph (denoted G′ below) to select seeds for short walks on
a large expander graph (the Margulis/Gabber-Galil expander).

Recall the ε-biased expander G from the proof of Theorem 3.1.3. Here we define
G′ in the same way, but on the vertex set {0, 1}n+3 log n instead of {0, 1}n; that is, we
construct a 1/n-biased set S ⊂ {0, 1}n+3 log n of size poly(n), and take G′ to be the
Cayley graph on Zn+3 log n

2 with generators S.

10We note that the general median of averages composition of [BGG93, Gol97] does not result in
an averaging sampler, which is the kind of sampler we consider in this chapter. Nonetheless, the
same ideas can be employed here to obtain an averaging sampler (albeit with weaker parameters).
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Construction 2.

1. Choose a random starting vertex v′0 ∈ G′.

2. Take a k/ log n-step random walk v′1, . . . , v
′
k/ log n on G′.

3. View each v′i ∈ {0, 1}n+3 log n as a (log n)-step walk on the Margulis/Gabber-Galil
expander of size 2n and degree 8.

4. Expand each such walk v′i into the nodes v
(i)
1 , . . . , v

(i)
log n ∈ {0, 1}n that it visits.

5. Output the k samples v
(1)
1 , . . . , v

(1)
log n, . . . , v

(k/ log n)
1 , . . . , v

(k/ log n)
log n .

This generator is computable in uniform AC0[⊕] since each of the required ingre-
dients is computable in uniform AC0[⊕], as discussed in Section 3.2.1. Moreover, it
is a good sampler for constant ε:

Proposition 1. For any constant ε > 0, Construction 2 is a strong (γ, ε)-averaging
sampler with seed-length n + O(k) = n + O(log(1/γ)) and sample complexity k =
O(log(1/γ)) (where the hidden constants depend on ε).

Proof. We begin by noting that the number of random bits used by Construction 2
is n + O(log n) + (k/ log n) ·O(log n) = n + O(k) (since we assume that k = Ω(log n))
and its sample complexity is k by construction. We show below that this sampler has
error at most γ = 2−Ω(k) when ε > 0 is a constant; in other words, Construction 2
has seed length n + O(k) = n + O(log(1/γ)) and sample complexity k = O(log 1/γ),
as claimed.

In the following analysis, we shall confine ourselves to the case of sampling a single
function (i.e., showing that Construction 2 is a non-strong averaging sampler). The
proof that it is a strong sampler is completely analogous and simply follows from the
fact that all the Chernoff bounds we apply are strong Chernoff bounds.

Let f : {0, 1}n → [0, 1] be the function that is being sampled, and let ρ =
Ex[f(x)]. We first observe that a (log n)-step random walk on the Margulis/Gaber-
Galil Expander of size 2n is likely to estimate ρ to within additive error ε/2. Indeed,
if we let x1, . . . , xlog n be a log n-step random walk on this expander, then by Theorem
3.1.1,

Pr

[∣∣∣∣∣
1

log n

log n∑
j=1

f(xj)− µ

∣∣∣∣∣ ≥ ε/2

]
≤ e−

ε2(1−λ) log n
4 = 1/nc,

for some positive constant c < 1/4 (since we assume ε is constant).
Construction 2 then says to choose the seeds to these (log n)-step walks according

to a walk of length k/ log n on a 2/n-expander G′ of degree poly(n). We expect at
most a 1/nc fraction of the short walks chosen in this way to yield poor estimates of ρ
(i.e. not estimate ρ within ±ε/2); however, it is enough to hope that at most an ε/2
fraction of the short walks are poor estimates in order to conclude that the average
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over all Θ(log n) · k/ log n = k samples will be ρ ± ε. Moreover, we would like this
to happen with probability 1 − 2−Ω(k). However, to conclude this we need to apply
a sharper Chernoff bound than Theorem 3.1.1. Indeed, for a walk of length k/ log n
Theorem 3.1.1 will never yield an failure probability smaller than 2−O(k/ log n) and we
would like to bound the failure probability by 2−Ω(k).

Fortunately, G′ is a very good expander (in particular, a 2/n-expander) and so we
may apply Corollary 3.4.6. Indeed, we are interested in accurately sampling a set of
density 1/nc (the bad log n-step walks), and G′ has eigenvalue 2/n ≤ (1/nc)2/3 (for
sufficiently large n), as required to apply Corollary 3.4.6. Specifically, we let X be
the random variable that counts how many of the log n-step walks are not ρ± ε/2, so
that X has expectation at most 1

nc · k
log n

, and then by Corollary 3.4.6

Pr

[
X ≥ ε

2
· k

log n

]
≤

(
2e

ε · nc

) 1
2
· ε
2
· k
log n

=

(
1

nΩ(1)

) k
log n

= 2−Ω(k),

since we assume ε is a constant.
That is, with probability 1 − 2−Ω(k), at least a 1 − ε/2 fraction of the (log n)-

step walks estimate ρ to within additive error ε/2, and hence the average over all
the samples is ρ ± ε. In other words, the probability that Construction 2 does not
estimate ρ within additive error ε is at most γ = 2−Ω(k), and the result follows.

3.2.4 Sampling vs. Hitting

Many applications of expander walks do not require the full power of the Chernoff
bound. For example, the randomness-efficient error reduction of [CW89, IZ89], ε-
biased sets of [NN90], the amplification of [GIL+90] and the derandomized XOR
lemma of [IW97] only require the hitting property of expander walks; i.e., they require
that for any set T ⊆ V of size at most |V |/2, the probability that a k-step random
walk never leaves T is at most 2−Ω(k).11 The latter three applications use the hitting
property in a very natural way: in each case, the construction requires a sequence of
objects that are combined in some way (e.g., addition, concatenation or XOR) and
the proof of correctness only requires that at least one of these objects is “good” –
furthermore, it is shown that “good” objects are abundant. Thus, by choosing these
objects according to an expander walk and applying the hitting property, at least one
of them will be “good” with high probability. For error reduction, it is less obvious
that the (strong) hitting property suffices, although it does.12

11Strictly speaking, some of these results seem to require the strong hitting property of expander
walks discussed in the introduction.

12Roughly, this is proved as follows: we suppose the algorithm of interest uses r-bits of randomness
and has error probability at most 1/20. The new algorithm chooses k random r-bit strings according
to an expander walk and outputs the majority vote of the k executions of the algorithm using these
random strings. For the analysis, we fix an input x and consider the set of random strings Tx that
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In light of this, it would have been sufficient to simply show that Constructions
1 and 2 satisfy the strong hitting property in order to prove the results discussed
in Section 3.3. Nonetheless, we choose to show that these constructions are strong
samplers – our motivation for doing so is twofold. Firstly, for certain applications
(especially error-reduction) the Chernoff-like behavior of the sampler makes for sim-
pler and, we feel, more natural proofs than the approach based on a strong hitting
generator. Secondly, we would like to say that our sampler can be used in place of an
expander walk for “any conceivable application”, and some applications of expander
walks do seem to require the strong sampling property – for instance, constructing
randomness extractors.

Loosely speaking, an extractor Ext : {0, 1}m × {0, 1}d → {0, 1}n is a function
that takes an m-bit input that is somewhat random, together with a short d-bit seed
that is truly random and outputs an n-bit string that is very close to random. (For
background on extractors, see the survey of Shaltiel [Sha02].)

One useful construction of an extractor (for sources of high, constant min-entropy)
is based on random walks on expanders. Specifically, if W : {0, 1}n+O(k) → ({0, 1}n)k

computes a k-step walk on a constant-degree expander, then the function Ext :

{0, 1}n+O(k) × [k] → {0, 1}n defined by Ext(x, s)
def
= W (x)s is a strong extractor for

sources x of min-entropy at least (1−β)m for some constant β > 0; this follows from
Theorem 3.1.1 (see [Zuc97] and [Zuc06]). Furthermore, the analysis of this extractor
only depends on the fact that an expander walk is a strong sampler; therefore we
may replace W with the sampler Γ of Theorem 3.1.3 to obtain such an extractor
that is computable by uniform AC0[⊕] circuits. In particular, by the same proof as
Proposition 4.2 of [Zuc06], we have the following corollary.

Corollary 3.2.4. For all ε, α > 0, there exists β > 0 such that there is a family of
strong ((1 − β)m, ε)-extractors Ext : {0, 1}m × {0, 1}d → {0, 1}n with n ≥ (1 − α)m
and d ≤ log(αm) that is computable by AC0[⊕] circuits of size poly(m). That is, for
any m-bit source X with min-entropy at least (1− β)m and an independent uniform
d-bit seed Y , the distribution (Ext(X,Y ), Y ) is ε-close (in total variation distance) to
the uniform distribution on n + d bits.

cause the original algorithm to err on x, and thus we have |Tx| ≤ 2r/20; to bound the probability
that at least k/2 of the sampled strings land in Tx, we consider all sequences of sets S1, . . . , Sk where
each Si is either Tx or its complement and where at least k/2 of the Si’s are Tx. It is easy to see
that there are 2k/2 such sequences, and by an appropriate version of the strong hitting property
and a suitably good expander graph, one can show that the probability that a walk exactly follows
such a given sequence of sets is less than (1/4)k. Therefore, the probability that a random walk hits
any of these 2k/2 sequences is less than (2k/2) · (1/4)k < 2−k.
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3.3 Proofs of Other Results

3.3.1 Error Reduction

Corollary 3.1.4 (restated). Let f : {0, 1}n → {0, 1} be a function computable by
polynomial-size uniform BP ·AC0[⊕] (respectively, BP ·TC0 or BP ·NC1) circuits
with error at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) >
1/2O(poly(n)), f has polynomial-size uniform BP ·AC0[⊕] (respectively, BP ·TC0 or
BP ·NC1) circuits with error at most δ using r + O(log(1/δ)) random bits.

Proof sketch. Let Cf be a circuit computing f . Construct the circuit that, on input
x ∈ {0, 1}n, runs k = Θ(log(1/δ)) copies of Cf in parallel using independent random
r-bit blocks of randomness, and then computes the (5/12, 7/12)-approximate majority
of the outputs [Ajt93]. (For BP·TC0 and BP·NC1 we can just compute the majority
exactly.) Now, instead of using independent random bits for each block, we apply the
construction of Γ : {0, 1}r+O(k) → ({0, 1}r)k from Theorem 3.1.3 (with ε = 1/12 and
γ = δ) to generate the necessary random bits from a seed of length r + O(k).

For any fixed input x, the probability that a randomly chosen r+O(k)-bit random
string causes the algorithm to fail (i.e., that more than 5/12 of the outputs of Γ fall in
the set of random strings that cause Cf to fail) is at most 2−Ω(k) = 2−Ω(Θ(log 1/δ)) since
Γ is an averaging sampler (and the latter set has density at most 1/3). By choosing
the constants appropriately, this is at most δ and the result follows.

Corollary 3.1.5 (restated). Let f : {0, 1}n → {0, 1} be a function computable
by polynomial-size uniform BP · AC0 circuits with error at most 1/3 using r =
r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size
uniform BP·AC0 circuits with error at most δ using min{r, polylog(n)}+O(log(1/δ))
random bits.

Proof sketch. Let Cf be a circuit computing f . By applying Nisan’s pseudorandom
generator for BP ·AC0 [Nis91] (which has been shown to be computable in AC0 in
[Vio04]), we may assume, with no loss of generality, that Cf uses only r′ = r′(n) =
min{r(n), logc(n)} random bits for some constant c that may depend on f .

If δ ≥ 1/2r′ , then we may apply the construction of Corollary 3.1.4 to obtain a
BP·AC0 circuit that has error at most δ and uses r′+O(log(1/δ)) bits of randomness.
(The circuit is in BP ·AC0, and not just BP ·AC0[⊕] because one can readily check
that all the necessary parities are on at most O(r′) = O(logc n) bits, and can therefore
be computed by a constant-depth circuit of size poly(n).)

If, on the other hand, δ < 1/2r′ , then we apply Corollary 3.1.4 with δ(n) = 2−r′ to
obtain an AC0 circuit that has error at most 2−r′ and uses r′+O(r′) ≤ O(r′) random
bits. We now apply Θ(log(1/δ)/r′) such circuits in parallel (on the same input, but in-
dependent random strings), and take the approximate majority of their Θ(log(1/δ)/r′)
outputs. Thus we have a circuit taking O(r′) · Θ(log(1/δ)/r′) = O(log(1/δ)) ≤
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r′+O(log(1/δ)) random bits and having error less than (2−r′)Θ(log(1/δ)/r′) (by a multi-
plicative Chernoff bound, such as Theorem 4.1 on p. 68 of [MR95]). This is at most
δ by an appropriate setting of constants, and the result follows.

3.3.2 Derandomization with Linear Advice

Corollary 3.1.6 (restated). uniform BP ·AC0 ⊆ uniform AC0/O(n).

Proof. Apply Corollary 3.1.5 to obtain a BP ·AC0 circuit with error less than 2−n

using r = O(n) random bits. By a union bound, at least one r-bit string causes the
circuit to correctly decide all inputs. Fix one such string as the non-uniform advice
and the result follows.

Corollary 3.3.1. Let AC0[⊕log] be the class of boolean functions computable by
poly(n)-size AC0 circuits having O(log n) parity gates, and similarly let AC0[SYMlog]
be the class of boolean functions computable by poly(n)-size AC0 circuits having
O(log n) arbitrary symmetric gates (e.g., parity and majority gates). Then the fol-
lowing inclusions hold:

1. BP ·AC0[⊕log] ⊆ AC0[⊕]/O(n)

2. BP ·AC0[SYMlog] ⊆ TC0/O(n)

Proof sketch. The proof is similar to the proofs of Corollaries 3.1.5 and 3.1.6, ex-
cept that we use the generator of Viola [Vio04] instead of Nisan’s. Specifically, the
generator from [Vio04] allows us to assume, without loss of generality, that any
function f ∈ BP · AC0[⊕log] (respectively, BP · AC0[SYMlog]) can be computed
by a BP · AC0[⊕] (respectively, BP · TC0) circuit using only no(1) random bits.
By applying Corollary 3.1.4, we may reduce the error to less than 2−n using only
no(1) +O(n) = O(n) random bits. Finally, a union bound yields a single advice string
of O(n) bits that works for all inputs.

3.3.3 An Optimal bitwise ε-biased generator in AC0[⊕]

Corollary 3.1.7. For every ε > 0 and m, there is an ε-biased generator G : {0, 1}n →
{0, 1}m with n = O(log m + log(1/ε)) such that uniform AC0[⊕] circuits of size
poly(n, log m) = poly(n) can compute G(s)i given (s, i) ∈ {0, 1}n × [m].

Proof idea. We follow the approach of [GV04] and implement the ε-biased generator
of Naor and Naor [NN90]. This generator employs a 7-wise independent generator
to construct a small set of “distinguishers” (an object that is weaker than an ε-
biased set), and from these it is possible to obtain an ε-biased generator by choosing
many such distinguishers (independently) and taking a random linear combination of
them. However, to improve the seed-length of their generator, [NN90] choose these
distinguishers according to a walk on an expander graph. Thus, to construct a bit-wise
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ε-biased generator in AC0[⊕], [GV04] require a bit-wise 7-wise independent generator
and long expander walks that are each computable by AC0[⊕] circuits. Constructions
of bit-wise 7-wise independent generators in AC0[⊕] are known [GV04, HV06], and
since the analysis of [NN90] only uses the fact that an expander walk is a good
hitting generator, our sampler construction from Section 3.2 can be used in place of
the expander walk.

3.4 Strong Chernoff Bounds for Expander Walks

In this section we give an elementary proof of a generalization of Gillman’s Cher-
noff Bound for Expander Walks [Gil94] (Theorem 3.1.1) as well as a (strong) multi-
plicative Chernoff bound for expander walks that is sharper than Theorem 3.1.1 when
the eigenvalue λ is small (Corollaries 3.4.5 and 3.4.6).

3.4.1 The Proof of Theorem 3.1.1

This section is devoted to proving the following theorem.

Theorem 3.1.1 (restated). Let G be a regular λ-expander on V and fix a sequence
of functions fi : V → [0, 1] each with mean µi = Ev[fi(v)]. If we consider a random
walk v1, . . . , vk on G, then for all ε > 0,

Pr

[∣∣∣∣∣
k∑

i=1

fi(vi)−
k∑

i=1

µi

∣∣∣∣∣ ≥ εk

]
≤ 2e−

ε2(1−λ)k
4 .

Wigderson and Xiao [WX05] have recently established essentially the same bound
(up to constants) using techniques from perturbation theory. Gillman’s proof (which
treats the case where f1 = · · · = fk) also employs results from perturbation and
complex analysis to obtain a similar bound. In contrast, the proof presented here has
only very modest prerequisites, which are summarized in the following paragraph.

Background We work with a regular λ-expander G on N nodes (see Definition
2.3.1). In particular, if we denote G’s transition matrix by P and if we write u =
(1/N, . . . , 1/N) ∈ RN , then Pu = u and

max
x∈RN

〈x,u〉=0

‖Px‖
‖x‖ ≤ λ.

For any z ∈ RN , we let z‖ = 〈1, z〉u denote the component of z in the direction of
1 = (1, . . . , 1) ∈ RN and we let z⊥ = z− z‖ = z− 〈1, z〉u denote the component of z
orthogonal to 1. Thus, for any z ∈ RN , we have that Pz‖ = z‖ and ‖Pz⊥‖ ≤ λ ·‖z⊥‖.
Another useful fact is that for any z ∈ RN , the vector Pz⊥ is orthogonal to 1 simply
because 〈1, Pz⊥〉 = 1T Pz⊥ and 1T P = 1T since we assume G is regular.
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Proof of Theorem 3.1.1. Define the random variable X =
∑

i fi(vi) where v1, . . . , vk

is a random walk on G, and let µ =
∑

i µi = E[X]. We shall bound the quantity
Pr [X ≥ µ + εk] and the same bound will follow for Pr [X ≤ µ− εk] by replacing the
functions fi(v) with 1 − fi(v). Let r ≤ log(1/λ)/2 be a positive parameter to be
specified later.

Pr [X ≥ µ + εk] = Pr
[
erX ≥ erµ+rεk

] ≤ E
[
erX

]

erµ+rεk
(3.1)

where the last step follows by applying Markov’s inequality.
We now focus on bounding E

[
erX

]
. Let P be the probability transition matrix

for G, and for each function fi let Ei be a diagonal matrix with diagonal entries(
erfi(v)

)
v∈V

. It is not hard to see that

E
[
erX

]
= 1T EkPEk−1P · · ·E1Pu, (3.2)

since every non-zero cross-term in this matrix product corresponds to exactly one
walk v1, . . . , vk on G and each such term is exactly the probability of the walk times
e

∑
i fi(vi).
Thus far, the techniques are quite standard. Indeed, the typical recipe for proving

a Chernoff bound begins by reducing the task to bounding the moment-generating
function E

[
erX

]
, and many previous tail bounds for Markov chains make use of the

identity (3.2) (albeit with E1 = · · · = Ek) to bound E
[
erX

]
[Gil94, Din95, Kah97,

L9́8, LP04, WX05].
At this point, however, the proof diverges from previous approaches in that we

bound (3.2) inductively using elementary manipulations. This is in contrast to the
previous works that rely heavily on the machinery of perturbation theory (with the
exception of [Kah97] which uses a novel eigenvalue argument), and also allows us to
treat the case of sampling distinct function f1, . . . , fk (which is not readily amenable
to previous techniques, except in the case of [WX05]).

Specifically, to bound the quantity (3.2), we study the sequence of vectors z0 = u,
z1 = E1Pu, z2 = E2PE1Pu, . . . inductively. Indeed, we note that

E
[
erT

]
= 1T EkPEk−1P · · ·E1Pu = 〈1, zk〉 = 〈1, z

‖
k〉 =

√
N · ‖z‖k‖, (3.3)

and so our goal is to bound ‖z‖k‖.
We bound ‖z‖k‖ by first showing (in Lemma 3.4.2) that each of the zi’s remains

nearly parallel to u (since Ei is close to the identity matrix when r is small, and
moreover P helps shrink any component of zi that is not parallel to u). Then we
observe (in Lemma 3.4.3) that Ei stretches u (and hence the zi’s, since they are
nearly parallel to u) by a factor of Ev

[
erfi(v)

] ≈ er Ev [fi(v)] = erµi (again, when r
is small) which in turn ensures that E

[
erT

] ≈ erµ; more precisely, we find that

E
[
erT

] ≤ erµ+r2k/(1−λ). This bounds the probability in (3.1) by e(r2/(1−λ)−εr)k, and
the result follows by choosing r to minimize this probability, i.e. r = ε(1− λ)/2.
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In the manipulations that follow, it may be worthwhile to bear in mind that we
ultimately choose r to be small and therefore er − 1 ≈ r is also small.

The following lemma bounds how long z
‖
i+1 and z⊥i+1 can be relative to z

‖
i and z⊥i .

Lemma 3.4.1. Let P and 0 < r ≤ log(1/λ)/2 be as above, and let E be a diagonal
matrix with diagonal entries (erf(v))v∈V for some function f : V → [0, 1] with mean
ρ = Ev[f(v)]. Then for any z ∈ RN :

1. ‖(EPz‖)‖‖ ≤ (1 + (er − 1)ρ) · ‖z‖‖.
2. ‖(EPz‖)⊥‖ ≤ er−1

2
· ‖z‖‖.

3. ‖(EPz⊥)‖‖ ≤ er−1
2
· λ · ‖z⊥‖.

4. ‖(EPz⊥)⊥‖ ≤
√

λ · ‖z⊥‖.
Proof. (1): (EPz‖)‖ = (Ez‖)‖ = 〈1, Ez‖〉u = 〈1, Eu〉z‖ = Ev

[
erf(v)

] · z‖, and using
the fact that erx ≤ 1 + (er − 1)x for all 0 ≤ x ≤ 1, we have

‖(EPz‖)‖‖ = E
v

[
erf(v)

] · ‖z‖‖ ≤ E
v

[1 + (er − 1)f(v)] · ‖z‖‖ = (1 + (er − 1)ρ) · ‖z‖‖.

(2): Recalling that (z‖)⊥ = 0 for all z, we note that for any α ∈ R,

(EPz‖)⊥ = (Ez‖)⊥ = ((E − α · I)z‖)⊥ + (α · z‖)⊥ = ((E − α · I)z‖)⊥.

Thus, we choose α = er+1
2

so that E − α · I is diagonal with entries bounded by er−1
2

in absolute value (since er − α = er−1
2

and e0 − α = − er−1
2

). Then,

‖(EPz‖)⊥‖ = ‖((E − α · I)z‖)⊥‖ ≤ er − 1

2
· ‖z‖‖.

(3): Recalling that (Pz⊥)‖ = 0 for all z, we note that for any α ∈ R,

(EPz⊥)‖ = ((E − α · I)Pz⊥)‖ + (α · Pz⊥)‖ = ((E − α · I)Pz⊥)‖.

Again, we choose α = er+1
2

so that E−α · I is diagonal with entries bounded by er−1
2

in absolute value, and get

‖(EPz⊥)‖‖ = ‖((E − α · I)Pz⊥)‖‖ ≤ er − 1

2
· ‖Pz⊥‖ ≤ er − 1

2
· λ · ‖z⊥‖,

where the last inequality uses the fact that ‖Pz⊥‖ ≤ λ · ‖z⊥‖ for any vector z ∈ RN .
(4): ‖(EPz⊥)⊥‖ ≤ ‖EPz⊥‖ ≤ er · ‖Pz⊥‖ ≤ erλ · ‖z⊥‖, and since we assume that

r ≤ log(1/λ)/2, this is at most
√

λ · ‖z⊥‖.
Recall that z0 = u and zi+1 = Ei+1Pzi. We now show that z⊥i remains short

compared to the previous z
‖
j ’s.
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Lemma 3.4.2. ‖z⊥i ‖ ≤ er−1
1−λ

·max
j<i

{‖z‖j‖} for 1 ≤ i ≤ k.

Proof. By the triangle inequality,

‖z⊥i ‖ = ‖(EiPzi−1)
⊥‖ = ‖(EiPz

‖
i−1)

⊥+(EiPz⊥i−1)
⊥‖ ≤ ‖(EiPz

‖
i−1)

⊥‖+‖(EiPz⊥i−1)
⊥‖.

Thus, by Items 2 and 4 of Lemma 3.4.1, we have ‖z⊥i ‖ ≤ er−1
2
· ‖z‖i−1‖+

√
λ · ‖z⊥i−1‖.

Recursively applying this bound, and noting that ‖z⊥0 ‖ = 0, we have

‖z⊥i ‖ ≤
er − 1

2
·

i−1∑
j=0

(
√

λ)j‖z‖i−j−1‖ ≤
er − 1

2(1−
√

λ)
·max

j<i
{‖z‖j‖}.

The lemma follows by noting that 1/(1−
√

λ) = (1 +
√

λ)/(1− λ) ≤ 2/(1− λ) since
λ ∈ [0, 1].

We now use Lemma 3.4.2 to bound ‖z‖i ‖ inductively.

Lemma 3.4.3. ‖z‖i ‖ ≤ exp
{

(er − 1)µi + λ·(er−1)2

2(1−λ)

}
·max

j<i
{‖z‖j‖}, for 1 ≤ i ≤ k.

Proof. By the triangle inequality,

‖z‖i ‖ = ‖(EiPzi−1)
‖‖ = ‖(EiPz

‖
i−1)

‖ + (EiPz⊥i−1)
‖‖ ≤ ‖(EiPz

‖
i−1)

‖‖+ ‖(EiPz⊥i−1)
‖‖.

Thus, by Items 1 and 3 of Lemma 3.4.1, we have ‖z‖i ‖ ≤ (1 + (er − 1)µi) · ‖z‖i−1‖ +
er−1

2
· λ · ‖z⊥i−1‖, and so by Lemma 3.4.2,

‖z‖i ‖ ≤ (1 + (er − 1)µi) · ‖z‖i−1‖+
λ · (er − 1)2

2(1− λ)
· max

j<i−1
{‖z‖j‖}

≤
(

1 + (er − 1)µi +
λ · (er − 1)2

2(1− λ)

)
·max

j<i
{‖z‖j‖}.

Finally, using the fact that 1 + x ≤ ex for all x ≥ 0, we conclude that this is at
most

exp

{
(er − 1)µi +

λ · (er − 1)2

2(1− λ)

}
·max

j<i
{‖z‖j‖}.

Recalling that ‖z‖0‖ = 1/
√

N , Lemma 3.4.3 implies that for all j ≥ 0:

‖z‖j‖ ≤
1√
N

j∏
i=1

exp

{
(er − 1)µi +

λ · (er − 1)2

2(1− λ)

}
,
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and in particular, by (3.3),

E
[
erX

]
=
√

N · ‖z‖k‖ ≤
k∏

i=1

exp

{
(er − 1)µi +

λ · (er − 1)2

2(1− λ)

}

= exp

{
(er − 1)µ +

λ · (er − 1)2

2(1− λ)
· k

}
. (3.4)

To simplify this expression, we shall assume that r ≤ 1/2 (and thus that er − 1 ≤
r + 2r2/3 ≤ 4r/3) and we note that µ ≤ k:

E
[
erX

] ≤ exp

{
(r + r2)µ +

λ · (4r/3)2

2(1− λ)
· k

}
≤ erµ+r2·(1+ λ

1−λ)·k = erµ+ r2k
1−λ .

Thus, by (3.1) we have

Pr [X ≥ µ + εk] ≤ E
[
erX

]

erµ+rεk
≤ e

(
r2

1−λ
−rε

)
k
.

Finally, we minimize this probability by setting r = (1 − λ)ε/2, noting that r is
indeed at most min{1/2, log(1/λ)/2} simply because ε ≤ 1 and 1− λ ≤ log(1/λ) for
all λ ∈ [0, 1]. It follows that

Pr [X ≥ µ + εk] ≤ e−
ε2(1−λ)k

4 .

Remark 3.4.4. One can readily see that the same proof applies even if the graph is
different for each of the k steps, as long as it is a λ-expander at each step. This is
observation is important for the proof of correctness of our sampler (Theorem 3.1.3),
as that construction concerns a walk on an expander graph that is varying from one
step to the next step. This observation is not unique to our proof of the Chernoff
bound, and this same property has been exploited before, most notably in the hardness
amplification result of Goldreich et al. [GIL+90] (although there, they only require the
hitting property of expander walks, and not the stronger sampling properties guaran-
teed here).

3.4.2 A Multiplicative Strong Chernoff Bound

As exemplified in Section 3.2.3, it is sometimes useful to have tail bounds that are
sharper than Theorem 3.1.1 when considering rare events and large deviations from
the mean. In this section we prove bounds (Corollaries 3.4.5 and 3.4.6) that improve
upon Theorem 3.1.1 in this case, provided that the eigenvalue λ is sufficiently small.

The motivation for such bounds comes from the case of independent random
variables. Indeed, it is well known that the standard additive Chernoff bound of the
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form Pr[X ≥ E[X] + εk] ≤ e−Ω(ε2k) (where X = X1 + · · · + Xk is a sum of i.i.d.
Bernoulli random variables Xi) is suboptimal when the mean of the Xi’s is very small
and ε is large. For instance, if we take E[Xi] = 1/k and we consider Pr[X ≥ k/2],
then the standard Chernoff bound (with ε = 1/2− 1/k) only bounds this probability
by e−Ω(k), when in fact it is possible to show that Pr[X ≥ k/2] ≤ e−Ω(k log k) (e.g., via
a multiplicative Chernoff bound, such as Theorem 4.1 of [MR95]).

The analogous case for expander walks is when the set we are trying to sample
is very small (or more generally when, in the notation of Theorem 3.1.1, the µi are
small). To obtain a sharper bound in this setting, however, one should have an
eigenvalue λ that is quite small, and then it is possible to slightly modify the proof
of Theorem 3.1.1 to obtain a bound analogous to Theorem 4.1 of [MR95]:

Corollary 3.4.5. Fix a sequence of functions fi : V → [0, 1] each with mean µi =
Ev[fi(v)] and let µ =

∑k
i=1 µi. If we consider a random walk v1, . . . , vk on a λ-

expander G, then for all δ > 0,

Pr

[
k∑

i=1

fi(vi) ≥ (1 + δ)µ

]
≤

(
eδ

(1 + δ)1+δ

)(
1− λ

1−λ
·( k

µ)
2
)
µ

.

In particular, when λ = 0 this matches Theorem 4.1 of [MR95]. We also note that
eδ/(1+δ)(1+δ) = eδ−(1+δ) log(1+δ) ≤ 1 for all δ ≥ 0, simply because δ ≤ (1+δ) log(1+δ)
(as can easily be verified by comparing the derivatives of both sides). Thus, the
bound is nontrivial whenever λ

1−λ
< (µ/k)2. So, for instance, if we are interested

in sampling a set of density α, then we should use an expander with λ . α2 in
order to meaningfully apply Corollary 3.4.5. In particular, if λ is sufficiently small
compared to α, say λ ≤ α2/3, then the bound from Corollary 3.4.5 is never more
than the square-root of the bound for independent random variables (i.e., Theorem
4.1 of [MR95]) – see also the proof of Corollary 3.4.6.

Consequently, Corollary 3.4.5 is sharper than Theorem 3.1.1 in the same way
that a multiplicative Chernoff bound is sharper than the standard additive Chernoff
bound, provided that λ is sufficiently small. For instance, analogously to the example
of independent random variables described above, if we have a set S ⊆ V of nodes
of density 1/k and take a random walk of length k, then the probability of landing
in S at least k/2 times is at most e−Ω(k log k) (provided that λ . 1/k2), and not just
e−Ω(k) (which is all that Theorem 3.1.1 gives). When bounding the probability of large
derivations from the mean (as in the previous example), the bound from Corollary
3.4.6 is often easier to work with and essentially as good as Corollary 3.4.5. Indeed,
this is the bound that we employ in the analysis of our alternate sampler construction
from Section 3.2.3 (i.e., Proposition 1).

Proof of Corollary 3.4.5. The proof is identical to the proof Theorem 3.1.1 up to the
derivation of (3.4), at which point we make a different choice of the parameter r. In
particular, we first equate the notation of Corollary 3.4.5 with that of Theorem 3.1.1
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by taking ε = δµ/k. Indeed, then Pr [X ≥ µ + εk] = Pr [X ≥ (1 + δ)µ], and so (3.1)
now becomes

Pr [X ≥ (1 + δ)µ] ≤ E
[
erX

]

er(1+δ)µ
. (3.5)

Next, in contrast to the proof of Theorem 3.1.1, we choose r = log(1 + δ) (rather
than r = (1 − λ)ε/2 = (1 − λ)δµ/2k). Before proceeding, however, we must check
that r ≤ log(1/λ)/2, as required throughout the proof of Theorem 3.1.1: we may
assume, with no loss of generality, that 1 + δ ≤ k/µ (indeed, the result is trivial if
δ > k/µ− 1), and we may assume that λ ≤ (µ/k)2, since otherwise the bound stated
in the Corollary is larger than 1. Therefore, we have r ≤ log(k/µ) ≤ log(1/λ)/2.

Substituting r = log(1 + δ) into (3.4), we have

E
[
erX

] ≤ eµδ+ λδ2k
2(1−λ) ,

and thus, by (3.5), we have

Pr [X ≥ (1 + δ)µ] ≤ eµδ+ λδ2k
2(1−λ)

elog(1+δ)(1+δ)µ
= e

(
δ+ λδ2

2(1−λ)
· k
µ
−(1+δ) log(1+δ)

)
µ
. (3.6)

To bound this expression, we first establish that

δ2

2
≤ k

µ
· [(1 + δ) log(1 + δ)− δ] . (3.7)

Indeed, both sides of this expression are equal to 0 when δ = 0, and we shall
verify that the derivative of the left-hand side (with respect to δ ∈ [0, k/µ − 1])
is always bounded by the derivative of the right-hand side: the derivative of the
left-hand side is δ and the derivative of the right-hand side is k

µ
· log(1 + δ), and

δ ≤ (1 + δ) log(1 + δ) ≤ k
µ
· log(1 + δ) for δ ∈ [0, k/µ− 1], so (3.7) holds.

Thus, by applying (3.7) to bound the δ2/2 term that appears in (3.6), we have

Pr [X ≥ (1 + δ)µ] ≤ e

(
δ+ λ

1−λ
·( k

µ)
2·[(1+δ) log(1+δ)−δ]−(1+δ) log(1+δ)

)
µ

= e

(
1− λ

1−λ
·( k

µ)
2
)
·[δ−(1+δ) log(1+δ)]µ

,

and the result follows.

As mentioned above, a bound like Corollary 3.4.5 is better than Theorem 3.1.1
when µ is small and δ is large (and when we can afford to choose λ to be sufficiently
small). With this in mind we mention a simpler, albeit less general, form of the
bound:
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Corollary 3.4.6. Fix a sequence of functions fi : V → [0, 1] each with mean µi =
Ev[fi(v)] and let µ =

∑k
i=1 µi. Furthermore, let G be a regular λ-expander on V for

some λ ≤ (µ/k)2/3. If we consider a random walk v1, . . . , vk on G then

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(eµ

t

)t/2

.

Proof. We let δ = t/µ− 1 so that t = (1 + δ)µ. Then by Corollary 3.4.5,

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(
eδ

(1 + δ)1+δ

)µ
(
1− λ

1−λ
·( k

µ)
2
)

.

Since we assume λ ≤ (µ/k)2/3 ≤ 1/3, we have that λ
1−λ

·
(

k
µ

)2

≤ 1/2, and thus

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(
eδ

(1 + δ)1+δ

)µ/2

<

(
e

1 + δ

)(1+δ)µ/2

=
(eµ

t

)t/2

.

3.5 Open Questions

In this chapter we construct an extremely efficient sampler that is in many respects
“just as good” as random-walk sampling using a constant-degree expander graph; a
natural question that is left open, however, is whether AC0[⊕] can actually compute
long expander walks – that is, whether there exists a family of constant-degree ex-
pander graphs for which a family of AC0[⊕] circuits can compute walks v1, . . . , vk

when given a starting node v0 and steps s1, . . . , sk.
13 Our techniques come close:

indeed, the approach of Section 3.2.1 can easily be modified to obtain a circuit that
computes walks on the zig-zag product G©z H when given a circuit for computing
walks on H. (Recall that G has size 2n and degree poly(n), and H has size poly(n).)
Thus, if we take H to be an exponentially-smaller copy of G (of size poly(n) and
degree polylog(n)) – rather than a constant-degree expander – AC0[⊕] can compute
long walks on H and therefore can also compute walks on the graph G©z H of degree
polylog(n); in fact, by recursively applying a constant number of such zig-zag prod-
ucts, we obtain an expander G′ of size at least 2n and degree at most poly(log(t) n) for
any constant t. Alternatively, by repeating this recursion log∗ n times, we obtain a
constant-degree expander G′ and a family of circuits of depth O(log∗ n) for computing
walks on G′. Can this depth be reduced to O(1)? Even less ambitiously, is there any

13Or, one could even remove the restriction on the input format and just ask for a generator whose
output distribution is the same (or even statistically close) to a random walk on an expander.
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family of constant-degree expander graphs for which a family of (nonuniform) NC1

circuits can compute long walks?
There is also the question of lower-bounds. We suspect that AC0 cannot compute

samplers that match the parameters of our AC0[⊕] construction. One approach to
showing this is to use the equivalence of samplers and extractors from [Zuc97] (see
also the discussion in Section 3.2.4) and show that AC0 cannot compute a (strong)
extractor for sources of high constant min-entropy. Viola [Vio04] has shown that AC0

cannot compute an extractor for sources of low min-entropy; however, his techniques
do not seem to apply directly in this setting.



Chapter 4

Derandomized Hardness
Amplification within NP

4.1 Introduction

Average-case complexity is a fundamental topic in complexity theory, whose study
has at least two distinct motivations. On one hand, it may provide more meaningful
explanations than worst-case complexity about the intractability of problem instances
actually encountered in practice. On the other hand, it provides us with methods to
generate hard instances, allowing us to harness intractability for useful ends such as
cryptography and derandomization.

One of the goals of this area is to establish connections between average-case
complexity and worst-case complexity. While this has been accomplished for high
complexity classes such #P and EXP (e.g. [Lip89, BF90, BFL91, FL96, CPS99,
STV01, TV02, Vio04]), it remains a major open question for NP. In fact, there are
results showing that such connections for NP are unlikely to be provable using the
same kinds of techniques used for the high complexity classes [FF93, BT03, Vio05a,
Vio04].

A more modest goal is “hardness amplification”, where we seek to establish connec-
tions between “mild” average-case complexity and “strong” average-case complexity.
That is, given a problem for which a nonnegligible fraction of inputs are “hard”, can
we obtain a problem for which almost all inputs are hard? To make this precise, let
us define “hard”.

Definition 4.1.1. For δ ∈ [0, 1/2], a function f : {0, 1}n → {0, 1} is δ-hard for size
s if every circuit of size s fails to compute f on at least a δ fraction of inputs.

Note that the maximum value of the hardness parameter δ is 1/2 because f is
boolean (and so can trivially be computed with error probability at most 1/2). This
notion of hardness is fairly standard (e.g. in the literature on derandomization start-
ing from [NW94]), but we remark that it differs from Levin’s notion of average-case

38
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complexity [Lev86] in several ways. Most importantly, Levin’s formulation corre-
sponds to algorithms that always either give the correct answer or say “don’t know,”
whereas we consider even “heuristic” algorithms that can make arbitrary errors. (See
Impagliazzo’s survey [Imp95b].)

The hardness amplification problem is to convert a function f that is δ-hard for size
s into a function f ′ that is (1/2−ε)-hard for size polynomially related to s. Typically,
δ = 1/ poly(n) and the aim is to make ε = ε(n) vanish as quickly as possible.

The standard approach to hardness amplification employs Yao’s XOR Lemma [Yao82]
(see [GNW95]): Given a mildly hard-on-average function f : {0, 1}n → {0, 1}, we de-
fine f ′ : {0, 1}n·k → {0, 1} by

f ′(x1, . . . , xk)
def
= f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk).

The XOR Lemma says that the hardness of f ′ approaches 1/2 exponentially fast with
k. More precisely:

Yao’s XOR Lemma. If f is δ-hard for size s(n) ≥ nω(1) and k ≤ poly(n), then f ′

is (1/2− 1/2Ω(δk) − 1/s′)-hard for size s′(n · k) = s(n)Ω(1).

In particular, taking k = Θ(n/δ), the amplified hardness is dominated by the 1/s′

term. That is, we can amplify to hardness (1/2− ε), where ε is polynomially related
to the (reciprocal of the) circuit size for which f was hard. (Note, however, that we
should measure ε = ε(n′) as a function of the new input length n′ = n · k, so when
k = n, the hardness is actually 1/2− 1/s(

√
n′)Ω(1).)

However, if we are interested in hardness amplification within NP (i.e. f and f ′

are characteristic functions of languages in NP), we cannot use the XOR lemma; it
does not ensure that f ′ is in NP when f is in NP. Hardness amplification within
NP was first addressed in a recent paper of O’Donnell [O’D04], which is the starting
point for our work.

4.1.1 O’Donnell’s Hardness Amplification

To ensure that the new function f ′ is in NP when f is in NP, O’Donnell [O’D04]
was led to study constructions of the form

f ′(x1, . . . , xk)
def
= C(f(x1), f(x2), . . . , f(xk)), (4.1)

where C is an efficiently computable monotone function. The monotonicity of C
ensures that f ′ is in NP when f is in NP. But we are left with the task of choosing
such a function C and proving that it indeed amplifies hardness.

Remarkably, O’Donnell was able to precisely characterize the amplification prop-
erties of Construction 4.1 in terms of a combinatorial property of the combining
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function C, called its expected bias. (The actual definition is not needed for this dis-
cussion, but can be found in Section 4.3.) By finding a monotone combining function
in which this expected bias is small, he obtained the first positive result on hardness
amplification in NP:

O’Donnell’s Theorem [O’D04]. If NP has a balanced function that is 1/ poly(n)-
hard for polynomial-size circuits, then NP has a function that is (1/2−1/n1/2−α)-hard
for polynomial-size circuits (where α is an arbitrarily small positive constant).

However, the amplification provided by O’Donnell’s theorem is not as strong as
what the XOR Lemma gives. It is limited to 1/2−1/

√
n, regardless of the circuit size

s for which the original function is hard, even if s is exponentially large. The XOR
Lemma, on the other hand, amplifies to 1/2 − 1/sΩ(1). O’Donnell showed that this
difference is inherent — no construction of the form (4.1) with a monotone combining
function C can always amplify hardness to better than 1/2− 1/n.1

4.1.2 Our Result

In this chapter, we manage to amplify hardness within NP beyond the 1/2− 1/n
barrier:

Main Theorem. If NP has a balanced function that is 1/ poly(n)-hard for circuits
of size s(n), then NP has a function that is (1/2− 1/s′(n))-hard for circuits of size
s′(n) = s(

√
n)Ω(1). In particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2nΩ(1)
, we amplify to hardness 1/2− 1/2nΩ(1)

.

3. If s(n) = 2Ω(n), we amplify to hardness 1/2− 1/2Ω(
√

n).

Items 1–3 match the parameters of the Yao’s XOR Lemma. However, subsequent
“derandomizations” of the XOR Lemma [Imp95a, IW97] actually amplify up to 1/2−
1/2Ω(n) rather than just 1/2 − 1/2Ω(

√
n) in the case s(n) = 2Ω(n). This gap is not

inherent in our approach and, as mentioned below, would be eliminated given a
corresponding improvement in one of the tools we employ.

Of course, our construction cannot be of the form in Construction (4.1). Below
we describe our two main points of departure.

1The gap between O’Donnell’s positive result of 1/2− 1/
√

n and his negative result of 1/2− 1/n
is not significant for what follows, and in particular, it will be subsumed by our improvements.
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4.1.3 Techniques

To explain how we bypass it, we first look more closely at the source of the
1/2− 1/n barrier. The actual barrier is 1/2− 1/k, where k is the input length of the
monotone combining function C. (This is based on a result of [KKL88], see [O’D04].)
Since in Construction (4.1), f ′ has input length n′ = n · k ≥ k, it follows that we
cannot amplify beyond 1/2− 1/n′.

Derandomization. Given the above, our first idea is to break the link between the
input length of f ′ and the input length of the combining function C. We do this by
derandomizing O’Donnell’s construction. That is, the inputs x1, . . . , xk are no longer
taken independently (as in Construction (4.1)), but are generated pseudorandomly
from a short seed of length n′ ¿ k, which becomes the actual input to f ′. Our method
for generating the xi’s is based on combinatorial designs (as in the Nisan–Wigderson
generator [NW94]) and Nisan’s pseudorandom generator for space-bounded compu-
tation [Nis92]; it reduces the input length of f ′ from n · k to n′ = O(n2 + log2 k). We
stress that this derandomization is unconditional, i.e. requires no additional com-
plexity assumption. We also remark that it is the quadratic seed length of Nisan’s
generator that limits our amplification to 1/2− 1/2Ω(

√
n) rather than 1/2− 1/2Ω(n) in

Part 3 of our Main Theorem, and thus any improvement in Nisan’s generator would
yield a corresponding improvement in our result.

Similar derandomizations have previously been achieved for Yao’s XOR Lemma
by Impagliazzo [Imp95a] and Impagliazzo and Wigderson [IW97]. The analysis of
such derandomizations is typically tailored to a particular proof, and indeed both
[Imp95a, IW97] gave new proofs of the XOR Lemma for that purpose. In our case,
we do not know how to derandomize O’Donnell’s original proof, but instead manage
to derandomize a different proof due to Trevisan [Tre03].

Our derandomization allows for k to be larger than the input length of f ′, and
hence we can go beyond the 1/2−1/n′ barrier. Indeed, by taking k to be a sufficiently
large polynomial, we amplify to 1/2− 1/(n′)c for any constant c.

Using Nondeterminism. To amplify further, it is tempting to take k superpoly-
nomial in the input length of f ′. But then we run into a different problem: how do we
ensure that f ′ is in NP? The natural algorithm for f ′ requires running the algorithm
for f on k inputs.

To overcome this difficulty, we observe that we need only give an efficient nondeter-
ministic algorithm for f ′. Each nondeterministic path may involve only polynomially
many evaluations of f while the global outcome f ′(x) depends on exponentially many
evaluations. To implement this idea, we exploit the specific structure of the combin-
ing function C. Namely, we (like O’Donnell) use the Tribes function of Ben-Or and
Linial [BL90], which is a monotone DNF with clauses of size O(log k). Thus, the
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nondeterministic algorithm for f ′ can simply guess a satisfied clause and (nondeter-
ministically) evaluate f on the O(log k) corresponding inputs.

4.1.4 Other Results

We also present some complementary negative results:

• We show that the assumption that the original hard function is balanced is
necessary, in the sense that no monotone “black-box” hardness amplification
can amplify unbalanced functions of unknown bias (or even improve their bias).2

• We show that our use of nondeterminism is necessary, in the sense that any
“black-box” hardness amplification in which each evaluation of f ′ is a monotone
function of at most k evaluations of f can amplify hardness to at most 1/2−1/k.

Informally, a “black-box” hardness amplification is one in which the construction
of the amplified function f ′ from f only utilizes f as an oracle and is well-defined
for any function f (regardless of whether or not it is in NP). Moreover, the correct-
ness of the construction is proved by a generic reduction that converts any oracle A
(regardless of its circuit size) that computes f ′ well on average (e.g., with probabil-
ity 1/2 + ε over random choice of input) into one that computes f much better on
average (e.g., with probability 1 − o(1) over random input). (A formal definition is
given in Section 4.7.1.) We note that most results on hardness amplification against
circuits, including ours, are black-box (though there have been some recent results
using non-black-box techniques in hardness amplification against uniform algorithms;
see [IW01, TV02]).

Our framework also gives a new proof of the hardness amplification by Impagliazzo
and Wigderson [IW97]. Our proof is simpler and in particular its analysis does not
employ the Goldreich–Levin [GL89] step.

4.1.5 Organization

The rest of the chapter is organized as follows. In Section 4.2, we discuss some
preliminaries. In Section 4.3, we review existing results on hardness amplification in
NP. In Section 4.4, we present our main results and new techniques. In Section 4.5
we treat the details of the proof of our main theorem. In Section 4.6 we show how we
could amplify to 1/2− 1/2Ω(n) given an improvement in the pseudorandom generator
we use, and we also give a new proof of the hardness amplification by Impagliazzo
and Wigderson [IW97]. In Section 4.7 we discuss some limitations of monotone hard-
ness amplification; in particular we show a sense in which the hypothesis that the
starting function be balanced is necessary, and also that the use of nondeterminism
is necessary.

2We note that there do exist balanced NP-complete problems, as observed by Barak [For03], but
this has no direct implication for us because we are studying the average-case complexity of NP.
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4.2 Preliminaries

We denote the uniform distribution on {0, 1}n by Un. If Un occurs more than once
in the same expression, it is understood that these all represent the same random vari-
able; for example, Un · f(Un) denotes the random variable obtained by choosing X
uniformly at random in {0, 1}n and outputting X · f(X) (where · means concatena-
tion).

Definition 4.2.1. Let X and Y be two random variables taking values over the same
set S. Then the statistical difference between X and Y , is

∆(X,Y )
def
= max

T⊆S

∣∣∣ Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣.

We view probabilistic functions as functions of two inputs, e.g. h(x; r), the first
being the input to the function and the second being the randomness. (Deterministic
functions may be thought of as probabilistic functions that ignore the randomness.)
For notational convenience, we will often omit the second input to a probabilistic
function, e.g. writing h(x) instead of h(x; r), in which case we view h(x) as the
random variable h(x; U|r|).

Definition 4.2.2. The bias of a 0-1 random variable X is

Bias [X]
def
=

∣∣∣ Pr[X = 0]− Pr[X = 1]
∣∣∣ = 2 ·∆(X,U1).

Analogously, the bias of a probabilistic function f : {0, 1}n → {0, 1} is

Bias [f ]
def
=

∣∣∣ Pr[f(Un) = 0]− Pr[f(Un) = 1]
∣∣∣,

where the probabilities are taken over both the input chosen according to Un and the
coin tosses of f . We say that f is balanced when Bias [f ] = 0.

Note that the bias of a random variable is a quantity between 0 and 1.
We say that the random variables X and Y are ε-indistinguishable for size s if for

every circuit C of size s,
∣∣∣ Pr

X
[C(X) = 1]− Pr

Y
[C(Y ) = 1]

∣∣∣ ≤ ε.

We will routinely use the following connection between hardness and indistin-
guishability.

Lemma 4.2.3 ([Yao82]). Let h : {0, 1}n → {0, 1} be any probabilistic function. If
the distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s then h is
(1/2− ε)-hard for size s−O(1). Conversely, if h is (1/2− ε)-hard for size s then the
distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s−O(1).
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Finally, whenever we amplify the hardness of a function f : {0, 1}n → {0, 1} that
is hard for circuits of size s(n), we assume that s(n) is well-behaved in the sense that
it is computable in time poly(n) and s(cn) = s(n)O(1), for all constants c > 0. Most

natural functions smaller than 2n, such as nk, 2logk n, 2nε
, 2εn, are well-behaved in this

sense.

4.3 Overview of Previous Hardness Amplification

in NP

In this section we review the essential components of existing results on hardness
amplification in NP. We then discuss the limitations of these techniques. By the end
of this section, we will have sketched the main result of O’Donnell [O’D04], following
the approach of Trevisan [Tre03]. We outline this result in a way that will facilitate
the presentation of our results in subsequent sections.

Let f : {0, 1}n → {0, 1} be an average-case hard function, and let C : {0, 1}k →
{0, 1} be any function. In [O’D04], O’Donnell studies the hardness of functions of the
form

C ◦f⊗k : ({0, 1}n)k → {0, 1}
where f⊗k(x1, . . . , xk)

def
= (f(x1), . . . , f(xk)), and ◦ denotes composition. That is,

(C ◦f⊗k)(x1, . . . , xk)
def
= C(f(x1), . . . , f(xk)).

In order to ensure that C ◦f⊗k ∈ NP whenever f ∈ NP, O’Donnell chooses C to
be a polynomial-time computable monotone function. (Indeed, it is not hard to see
that a monotone combination of NP functions is itself in NP.)

O’Donnell characterizes the hardness of C ◦f⊗k in terms of a combinatorial prop-
erty of the combining function C, called its expected bias (which we define later).

We will now review the key steps in establishing this characterization and O’Donnell’s
final amplification theorem.

Step 1: Impagliazzo’s hardcore sets. An important tool for establishing this
connection is the hardcore set lemma of Impagliazzo [Imp95a], which allows us to
pass from computational hardness to information-theoretic hardness.

Definition 4.3.1. We say that a (probabilistic) function g : {0, 1}n → {0, 1} is δ-
random if g is balanced and there exists a subset H ⊆ {0, 1}n with |H| = 2δ2n such
that g(x) = U1 (i.e. a coin flip) for x ∈ H and g(x) is deterministic for x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on which it is information-
theoretically unpredictable. Note that in the above definition we require g to be
balanced. This will be convenient when dealing with functions f that are balanced.
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The following version of Impagliazzo hardcore set lemma says that any balanced
δ-hard function f : {0, 1}n → {0, 1} has a hardcore set H ⊆ {0, 1}n of density ≈ 2δ
such that f is very hard-on-average on H. Thus, f looks like a δ-random function
to small circuits (cf. Lemma 4.2.3). (Following subsequent works, our formulation of
Impagliazzo’s lemma differs from the original one in several respects.)

Lemma 4.3.2 ([Imp95a, KS03, STV01, O’D04]). For any function f : {0, 1}n →
{0, 1} that is balanced and δ-hard for size s, there exists a δ′-random function g :
{0, 1}n → {0, 1} such that X · f(X) and X · g(X) are ε-indistinguishable for size
Ω(sε2/ log(1/δ)), with δ/2 ≤ δ′ ≤ δ, where X ≡ Un.

In particular, by a standard hybrid argument (see, e.g., [Gol01]),

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ)), where the Xi’s are uniform and
independent.

Step 2: Expected Bias. By the above, proving the computational hardness of
C ◦f⊗k reduces to calculating the information-theoretic hardness of C ◦g⊗k for some
δ′-random g. It turns out that information-theoretic hardness can be characterized
by the following quantity.

Definition 4.3.3. Let h : {0, 1}n → {0, 1} be any probabilistic function. We define
the expected bias of h by

ExpBias [h]
def
= E

x←Un

[
Bias [h(x)]

]
,

where Bias [h(x)] is taken over the coin tosses of h.

It turns out that for any function C : {0, 1}k → {0, 1} and any δ-random g, the
quantity ExpBias

[
C ◦ g⊗k

]
does not depend on the particular choice of the δ-random

function g; indeed, it turns out to equal the quantity that O’Donnell [O’D04] calls
the “expected bias of C with respect to noise 2δ” and denotes by ExpBias2δ(C) in
[O’D04]. However, the more general notation we use will be useful in presenting our
improvements.

The next lemma shows that information-theoretic hardness is equivalent to ex-
pected bias.

Lemma 4.3.4. For any probabilistic function h : {0, 1}n → {0, 1},

∆(Un · h(Un), Un · U1) =
1

2
ExpBias [h] .

Proof. ∆(Un·h(Un), Un·U1) = E
x←Un

[∆(h(x), U1)] = E
x←Un

[Bias [h(x)] /2] = ExpBias [h] /2.



Chapter 4: Derandomized Hardness Amplification within NP 46

In particular, for any circuit C (regardless of its size) we have
∣∣∣ Pr[C(Un ·h(Un)) =

1] − Pr[C(Un · U1) = 1]
∣∣∣ ≤ ExpBias [h] /2, and thus by Lemma 4.2.3, h is (1/2 −

ExpBias [h] /2)-hard for circuits of any size.
Now we characterize the hardness of C ◦f⊗k in terms of expected bias. Specifically,

by taking, say, ε = 1/s1/3 in Lemma 4.3.2 and using Lemmas 4.2.3 and 4.3.4, one can
prove the following (we defer the details until the proof of the more general Lemma
4.5.2).

Lemma 4.3.5 ([O’D04]). Let f : {0, 1}n → {0, 1} be balanced and δ-hard for size s,
and let C : {0, 1}k → {0, 1} be any function. Then there exists a δ′-random function
g : {0, 1}n → {0, 1}, with δ/2 ≤ δ′ ≤ δ, such that C ◦f⊗k : ({0, 1}n)k → {0, 1} has
hardness

1

2
− ExpBias

[
C ◦g⊗k

]

2
− k

s1/3

for circuits of size Ω
(
s1/3/ log(1/δ)

) − size(C), where size(C) denotes the size of a
smallest circuit computing C.

What makes this lemma so useful, as noted above, is that ExpBias
[
C ◦g⊗k

]
is in-

dependent of the choice of the δ-random function g (using the fact that g is balanced,
by definition of δ-random); hence the hardness of C ◦f⊗k depends only on the com-
bining function C and the hardness parameter δ. Thus, understanding the hardness
of C ◦f⊗k is reduced to analyzing a combinatorial property of the combining function
C.

Step 3: Noise Stability Unfortunately, it is often difficult to analyze the expected
bias directly. However, the expected bias is closely related to the noise stability,
a quantity that is more amenable to analysis and well-studied (see, e.g., [O’D04],
[MO03]). The noise stability of a function is (up to normalization) the probability
that the value of the function is the same on two correlated inputs x and x+η, where
x is a random input and η a random vector of noise.

Definition 4.3.6. The noise stability of C with respect to noise δ, denoted NoiseStabδ[C],
is defined by

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x⊕ η)]− 1,

where x is random, η is a vector whose bits are independently one with probability δ
and ⊕ denotes bitwise XOR.

The following lemma from [O’D04] bounds the expected bias of C ◦g⊗k (and hence
the hardness in Lemma 4.3.5) in terms of the noise stability of C.

Lemma 4.3.7. Let g : {0, 1}n → {0, 1} be δ-random. Then

ExpBias
[
C ◦ g⊗k

] ≤
√

NoiseStabδ[C].
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Combining this with Lemma 4.3.5, we find that the hardness of C ◦f⊗k is at least
(roughly) 1/2−

√
NoiseStabδ[C]/2. The next step is to exhibit a combining function

C with a small noise stability (to ensure that the hardness of C ◦f⊗k is as close to
1/2 as possible). The following is shown in [O’D04].

Lemma 4.3.8 ([O’D04]). For all δ > 0, there exists a k = poly(1/δ) and a polynomial-
time computable monotone function C : {0, 1}k → {0, 1} with NoiseStabδ[C] ≤
1/kΩ(1).

Finally, by combining Lemmas 4.3.5, 4.3.7 and 4.3.8, we obtain the following
weaker version of O’Donnell’s hardness amplification within NP. (While in the in-
troduction we mentioned a stronger version of O’Donnell’s result, that amplifies up
to hardness 1/2−1/m1/2−α for every constant α > 0, the following version will suffice
as a starting point for our work. The loss in the amplification in this version comes
from the fact that we did not specify the constants in Lemma 4.3.8.)

Theorem 4.3.9 ([O’D04]). If there is a balanced function f : {0, 1}n → {0, 1} in NP
that is 1/ poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in
NP that is (1/2− 1/mΩ(1))-hard for size s(mΩ(1))Ω(1).

Limitations of Direct Product Constructions.
O’Donnell also showed that Theorem 4.3.9 is essentially the best result that one can
obtain using the techniques that we have described thus far. He showed that for all
monotone combining functions C there is a δ-hard function f such that the hardness
of C ◦f⊗k is not much better than 1/2− NoiseStabδ[C]/2 (assuming that C is easily
computable). This is problematic because the noise stability of monotone functions
cannot become too small. Specifically, by combining a result from [KKL88] with
a Fourier characterization of noise stability, O’Donnell [O’D04] proves the following
theorem.

Theorem 4.3.10 ([KKL88, O’D04]). For every monotone function C : {0, 1}k →
{0, 1} and every δ > 0,

NoiseStabδ[C] ≥ (1− 2δ) · Ω
(

log2 k

k

)
.

Therefore, for any monotone C : {0, 1}k → {0, 1} there is a δ-hard f such that
C ◦f⊗k does not have hardness 1/2−NoiseStabδ[C]/2 ≤ 1/2−Ω(1/k). Since C ◦f⊗k

takes inputs of length m = n·k ≥ k, this implies that we must employ a new technique
to amplify beyond hardness 1/2− Ω(1/m).

4.4 Main Theorem and Overview

In this chapter, we obtain the following improvement upon Theorem 4.3.9.
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Theorem 4.4.1 (Main Theorem). If there is a balanced function f : {0, 1}n → {0, 1}
in NP that is 1/ poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m →
{0, 1} in NP that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).3

We also show that the assumption that we start with a balanced function f is
essential for a large class of hardness amplifications. Specifically, we show (Section
4.7.1) that no monotone black-box hardness amplification can amplify the hardness
of functions whose bias is unknown. Most hardness amplifications, including the one
in this chapter, are black-box.

We now elaborate on the two main techniques that allow us to prove Theorem
4.4.1. As explained in the introduction, these two techniques are derandomization
and nondeterminism.

4.4.1 Derandomization

As in the previous section, let f : {0, 1}n → {0, 1} be our hard function and let
C : {0, 1}k → {0, 1} be a (monotone) combining function.

We will derandomize O’Donnell’s construction using an appropriately “pseudo-
random” generator.

Definition 4.4.2. A generator is a function G : {0, 1}l → ({0, 1}n)k. We call l
the seed length of G, and we often write G(σ) = X1 · · ·Xk, with each Xi ∈ {0, 1}n.
G is explicitly computable if given σ and 1 ≤ i ≤ k, we can compute Xi in time
poly(l, log k), where G(σ) = X1 · · ·Xk.

Instead of using the function C ◦f⊗k : ({0, 1}n)k → {0, 1}, we take a generator
G : {0, 1}l → ({0, 1}n)k (where l ¿ nk) and use (C ◦f⊗k) ◦G : {0, 1}l → {0, 1}, i.e.,

(C ◦f⊗k) ◦G(σ) = C
(
f(X1), . . . , f(Xk)

)
,

where (X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G(σ). This reduces the input length
of the function to l. Therefore, if G is a “good” pseudorandom generator we would
expect (C ◦f⊗k) ◦G to be harder (with respect to its input length) than C ◦f⊗k. We
will show that this is indeed the case, provided the generator G satisfies the following
requirements:

1. G is indistinguishability-preserving: Analogously to Lemma 4.3.5, the gen-
erator G should be such that the computational hardness of (C ◦f⊗k) ◦G is at
least the information-theoretic hardness of (C ◦ g⊗k) ◦ G for some δ-random

3A comment is in order about the input lengths for which f ′ is hard. As it turns out, the hardness
of f ′ on inputs of length m is related to the hardness of the original function f on inputs of length
Θ(
√

m). Thus if f is hard for all sufficiently large input lengths, then so is f ′. Alternatively, if f is
only hard infinitely often, then we may still conclude that f ′ is hard infinitely often.
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function g – that is, at least 1/2 − ExpBias
[
(C ◦ g⊗k) ◦G

]
. We will see that

this can be achieved provided that G is indistinguishability-preserving; that is
(analogously to the last part of Lemma 4.3.2),

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

should be indistinguishable, for some δ-random g, when σ
R←{0, 1}l and where

(X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G on input σ.

2. G fools the expected bias: G should be such that for any δ-random g,
ExpBias

[
(C ◦ g⊗k) ◦G

]
is approximately ExpBias

[
C ◦ g⊗k

]
, and thus we have,

by Lemma 4.3.7:

ExpBias
[
(C ◦ g⊗k) ◦G

] ≤
√

NoiseStabδ[C] + ε, (4.2)

for a suitably small ε. Actually, we will not show that G fools the expected bias
directly but instead will work with a related quantity (the expected collision
probability), which will still suffice to show Inequality (4.2).

Informally, the effect of the two above requirements on the generator G is that the
hardness of (C ◦f⊗k) ◦G is roughly the hardness of C ◦f⊗k, while the input length is
dramatically reduced from nk to l (the seed length of G). More precisely, as illustrated
in Figure 1, the first requirement allows us to relate the hardness of (C ◦f⊗k) ◦G to
the information-theoretic hardness of (C ◦g⊗k) ◦G (where g is a δ-random function);
the second allows us to relate this information-theoretic hardness to the noise stability
of the combining function C. In particular, if we employ the combining function from
Lemma 4.3.8, we obtain hardness 1/2− 1/kΩ(1). Thus, by choosing k À l, we bypass
the barrier discussed at the end of the previous section.

Now we briefly describe how the above requirements on G are met. The first
requirement is achieved through a generator that outputs combinatorial designs. This
construction is essentially from Nisan and Wigderson [Nis91, NW94] and has been
used in many places, e.g. [IW97, STV01].

The second requirement is achieved as follows. We show that if G is pseudoran-
dom against space-bounded algorithms and the combining function C is computable
in small space (with one-way access to its input), then Inequality (4.2) holds. We
then use Nisan’s unconditional pseudorandom generator against space-bounded algo-
rithms [Nis92], and show that combining functions with low noise stability can in fact
be computed in small space.4 Note that we only use the pseudorandomness of the
generator G to relate the expected bias with respect to G to a combinatorial property

4The same approach also works using the unconditional pseudorandom generator against
constant-depth circuits of [Nis91] and showing that the combining function is computable by a
small constant-depth circuit; however, the space generator gives us slightly better parameters.
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of the combining function C. In particular, it is not used to fool the circuits trying to
compute the hard function. This is what allows us to use an unconditional generator
against a relatively weak model of computation.

Our final generator, Γ, is the generator obtained by XORing a generator that is
indistinguishability-preserving and a generator that fools the expected bias, yielding
a generator that has both properties. The approach of XORing two generators in this
way appeared in [IW97], and was subsequently used in [STV01].

4.4.2 Using Nondeterminism

The derandomization described above gives hardness amplification up to 1/2 −
1/nc for any constant c. This already improves upon the best previous result, namely
Theorem 4.3.9. However, to go beyond this new techniques are required. The problem
is that if we want C to be computable in time poly(n), we must take k = poly(n) and
thus we amplify to at most 1/2− 1/k = 1/2− 1/ poly(n).

We solve this problem by taking full advantage of the power of NP, namely
nondeterminism. This allows us to use a function C : {0, 1}k → {0, 1} which is
computable in nondeterministic time poly(n, log(k)); thus, the amplified function
will still be in NP for k as large as 2n.

Conversely, in Section 4.7.2 we show that any non-adaptive monotone black-box
hardness amplification that amplifies to hardness 1/2− 1/nω(1) cannot be computed
in P, i.e. the use of nondeterminism is essential.

We proceed by discussing the details of the derandomization (Sections 4.5.1, 4.5.2
and 4.5.3) and the use of nondeterminism (Section 4.5.4). The results obtained in
these sections are summarized in Table 1. For clarity of exposition, we focus on
the case where the original hard function f is balanced and is 1/3-hard. Hardness
amplification from hardness 1/ poly(n) is discussed in Section 4.5.5, and hardness
amplification of unbalanced functions is discussed in Section 4.7.1.

4.5 Proof of Main Theorem

In this section we prove our main theorem (i.e., Theorem 4.4.1).

4.5.1 Preserving Indistinguishability

The main result in this subsection is that if G is pseudorandom in an appropriate
sense, then the hardness of (C ◦f⊗k) ◦G is roughly

1/2− ExpBias
[
(C ◦ g⊗k) ◦G

]
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Table 4.1: Hardness Amplification within NP.

Functions : {0, 1}n → {0, 1}

Amplification up to Technique Reference

1/2− 1/
√

n Direct Product [O’D04]

1/2− 1/nc, for every c Derandomized Direct Product Theorem 4.5.8

Derandomized

1/2− 1/2Ω(
√

n) Direct Product & Theorem 4.5.13

Nondeterminism

for some δ-random function g. As we noted in the previous section, it will be sufficient
for G to be indistinguishability-preserving . We give the definition of indistinguisha-
bility-preserving and then our main result.

Definition 4.5.1. A generator G : {0, 1}l → ({0, 1}n)k is said to be indistinguishabi-
lity-preserving for size t if for all (possibly probabilistic) functions f1, . . . , fk, g1, . . . , gk

the following holds:
If for every i, 1 ≤ i ≤ k the distributions

Un · fi(Un) and Un · gi(Un)

are ε-indistinguishable for size s, then

σ · f1(X1) · · · fk(Xk) and σ · g1(X1) · · · gk(Xk)

are kε-indistinguishable for size s − t, where σ is a random seed of length l and
X1 · · ·Xk is the output of G(σ).

The fact that in the above definition we consider k fi’s and k gi’s implies that an
indistinguishability− preserving generator stays indistinguishability− preserving
when XORed with any other generator (cf. the proof of Item 1 in Lemma 4.5.12).
We will use this property in the proof of our main result.

Lemma 4.5.2. Let f : {0, 1}n → {0, 1} be δ-hard for size s, let G : {0, 1}l →
({0, 1}n)k be a generator that is indistinguishability-preserving for size t and let C :
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{0, 1}k → {0, 1} be any function. Then there exists a δ′-random g, with δ/2 ≤ δ′ ≤ δ
such that the function (C ◦f⊗k) ◦G : {0, 1}l → {0, 1} has hardness

1

2
− ExpBias

[
(C ◦ g⊗k) ◦G

]

2
− k

s1/3

for circuits of size Ω
(
s1/3/ log(1/δ)

)− t− size(C) where size(C) denotes the size of a
smallest circuit computing C.

Proof. By Lemma 4.3.2, there exists a δ′-random function g with δ/2 ≤ δ′ ≤ δ, such
that Un · f(Un) and Un · g(Un) are ε-indistinguishable for size Ω(sε2/ log(1/δ)). Since
G is an indistinguishability-preserving for size t by assumption, this implies that

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ))− t, where here and below σ denotes
a uniform random seed in {0, 1}l and X1 · · ·Xk will denote the output of G(σ). This
in turn implies that

σ · C(f(X1) · · · f(Xk)) and σ · C(g(X1) · · · g(Xk))

( i.e., σ · (C ◦f⊗k) ◦ G(σ) and σ · (C ◦ g⊗k) ◦ G(σ)) are kε-indistinguishable for size
Ω(sε2/ log(1/δ))− t− size(C). By Lemma 4.3.4,

σ · (C ◦ g⊗k) ◦G and σ · U1

are (ExpBias
[
(C ◦ g⊗k) ◦G

]
/2)-indistinguishable for any size. Therefore, we have

that
σ · (C ◦f⊗k) ◦G and σ · U1

are (ExpBias
[
(C ◦ g⊗k) ◦G

]
/2 + kε)-indistinguishable for size Ω(sε2/ log(1/δ))− t−

size(C). The result follows by setting ε = 1/s1/3 and applying Lemma 4.2.3.

In particular, we note that the identity generator G : {0, 1}nk → ({0, 1}n)k, i.e.
G(x) = x, is indistinguishability-preserving for size 0 (by a hybrid argument, see, e.g.,
[Gol01]), and thus Lemma 4.3.5 is a corollary of Lemma 4.5.2. However, the identity
generator has seed-length nk and is therefore a very poor pseudorandom generator.
Fortunately, there are indistinguishability-preserving pseudorandom generators with
much shorter seeds which will allow us to use Lemma 4.5.2 to obtain much stronger
hardness amplifications.

Lemma 4.5.3. There is a constant c such that for every n ≥ 2 and every k = k(n)
there is an explicitly computable generator NW k : {0, 1}l → ({0, 1}n)k with seed length
l = c · n2 that is indistinguishability-preserving for size k2.
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Proof. The generator is the main component of the generator by Nisan and Nisan
and Wigderson [Nis91, NW94], and is based on combinatorial designs. Specifically,
we let S1, . . . , Sk ⊆ [l] be an explicit family of sets such that |Si| = n for all i, and
|Si ∩Sj| ≤ log k for all i 6= j. Nisan [Nis91] gives an explicit construction of such sets
with l = O(n2). Then the generator NW k : {0, 1}l → ({0, 1}n)k is defined by

NW k(σ) := (σ|S1 , . . . , σ|Sk
),

where σ|Si
∈ {0, 1}n denotes the projection of σ onto the coordinates indexed by the

set Si.
The proof that this generator is indistinguishability preserving for size k2 fol-

lows the arguments in [NW94, STV01]. For completeness, we sketch the proof here.
Suppose that we have a circuit C of size s − k2 distinguishing the distributions
σ · f1(σ|S1) · · · fk(σ|Sk

) and σ · g1(σ|S1) · · · gk(σ|Sk
) with advantage greater than k · ε.

For i = 0, . . . , k, let Hi be the hybrid distribution

Hi = σ · g1(σ|S1) · · · gi(σ|Si
) · fi+1(σ|Si+1

) · · · fk(σ|Sk
).

Then there must exist an i ∈ {0, . . . , k} such that C distinguishes Hi from Hi+1 with
advantage greater than ε. The only difference between Hi and Hi+1 is that Hi has the
component fi+1(σ|Si+1

) while Hi+1 has gi+1(σ|Si+1
). By averaging, we may fix all the

bits of σ outside of Si+1 (as well as the randomness of fj, gj for j 6= i + 1 if they are
probabilistic functions) while preserving the advantage of C. Thus C distinguishes
between two distributions of the form

τ · h1(τ)h2(τ) · · ·hi(τ)fi+1(τ)hi+2(τ) · · ·hk(τ),

and
τ · h1(τ)h2(τ) · · ·hi(τ)gi+1(τ)hi+2(τ) · · ·hk(τ),

where τ is uniform in {0, 1}n and each hj is a function of at most |Sj ∩ Si+1| bits
of τ . Then each hj can be computed by a circuit of size smaller than 2|Sj∩Si+1| ≤ k.
Combining these k− 1 circuits with C, we get a distinguisher between τ · fi+1(τ) and
τ · gi+1(τ) of size |C|+ (k − 1) · k < s and advantage greater than ε.

4.5.2 Fooling the Expected Bias

In this subsection we prove a derandomized version of Lemma 4.3.7. Informally,
we show that if C is computable in a restricted model of computation and G “fools”
that restricted model of computation, then for any δ-random function g:

ExpBias
[
(C ◦ g⊗k) ◦G

] ≤
√

NoiseStabδ[C] + ε.

The restricted model of computation we consider is that of nonuniform space-
bounded algorithms which make one pass through the input, reading it in blocks of
length n. These are formally modeled by the following kind of branching programs.
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Definition 4.5.4. A (probabilistic, read-once, oblivious) branching program of size
s with block-size n is a finite state machine with s states, over the alphabet {0, 1}n

(with a fixed start state, and an arbitrary number of accepting states). Each edge is
labelled with a symbol in {0, 1}n. For every state a and symbol α ∈ {0, 1}n, the edges
leaving a and labelled with α are assigned a probability distribution. Then computation
proceeds as follows. The input is read sequentially, one block of n bits at a time. If
the machine is in state a and it reads α, then it chooses an edge leaving a and labelled
with α according to its probability, and moves along it.

Now we formally define pseudorandom generators against branching programs.

Definition 4.5.5. A generator G : {0, 1}l → ({0, 1}n)k is ε-pseudorandom against
branching programs of size s and block-size n if for every branching program B of
size s and block-size n:

∣∣ Pr[B(G(Ul)) = 1]− Pr[B(Unk) = 1]
∣∣ ≤ ε.

In [Nis92], Nisan builds an unconditional pseudorandom generator against branch-
ing programs. Its parameters (specialized for our purposes) are given in the following
theorem.

Theorem 4.5.6 ([Nis92]). For every n and k ≤ 2n, there exists a generator

Nk : {0, 1}l → ({0, 1}n)k

such that:

• Nk is 2−n-pseudorandom against branching programs of size 2n and block-size
n.

• Nk has seed length l = O(n log k).

• Nk is explicitly computable.

Note that Nisan [Nis92] does not mention probabilistic branching programs. How-
ever, if there is a probabilistic branching program distinguishing the output of the
generator from uniform, then by a fixing of the coin tosses of the branching pro-
gram there is a determinisitic branching program that distinguishes the output of the
generator from uniform.

We now state the derandomized version of Lemma 4.3.7.

Lemma 4.5.7. Let

• g : {0, 1}n → {0, 1} be a δ-random function,

• C : {0, 1}k → {0, 1} be computable by a branching program of size t and block-
size 1,



Chapter 4: Derandomized Hardness Amplification within NP 55

• G : {0, 1}l → ({0, 1}n)k be ε/2-pseudorandom against branching programs of
size t2 and block-size n.

Then ExpBias
[
(C ◦ g⊗k) ◦G

] ≤
√

NoiseStabδ[C] + ε.

Proof. We will not show that G fools the expected bias, but rather the following re-
lated quantity. For a probabilistic boolean function h(x; r) we define its (normalized)
expected collision probability as

ExpCP[h]
def
= E

x

[
2 · Pr

r,r′
[h(x; r) = h(x; r′)]− 1

]
.

The same reasoning that proves Lemma 4.3.7 also shows that for every probabilistic
boolean function h:

ExpBias [h] ≤
√

ExpCP[h]. (4.3)

More specifically, Inequality (4.3) holds because

ExpBias [h] = E
x←Un

[
Bias [h(x)]

]

≤
√

E
x←Un

[
Bias [h(x)]2

]
(by Cauchy-Schwartz)

=
√

ExpCP[h]

Let h(x; r) : ({0, 1}n)k → {0, 1} be the probabilistic function C ◦ g⊗k. Even though
h is defined in terms of g, it turns out that its expected collision probability is the same
for all δ-random functions g. Specifically, for x = (x1, . . . , xk), the only dependence
of the collision probability Prr,r′ [h(x; r) = h(x; r′)] on xi comes from whether g(xi)
is a coin flip (which occurs with probability δ over the choice of xi), g(xi) = 1
(which occurs with probability (1−δ)/2), or g(xi) = 0 (which occurs with probability
(1−δ)/2). In the case where g(xi) is a coin flip, then the i’th bits of the two inputs fed
to C (i.e. g(xi; r) and g(xi; r

′)) are random and independent, and otherwise they are
equal and fixed (according to g(xi)). It can be verified that this corresponds precisely
to the definition of noise stability, so we have:

ExpCP[h] = NoiseStabδ[C]. (4.4)

Now we construct a probabilistic branching program M : ({0, 1}n)k → {0, 1} of
size t2 and block-size n such that for every x ∈ ({0, 1}n)k:

Pr[M(x) = 1] = Pr
r,r′

[h(x; r) = h(x; r′)].

To do this, we first note that, using the branching program for C, we can build a
probabilistic branching program of size t with block-size n which computes C ◦ g⊗k:



Chapter 4: Derandomized Hardness Amplification within NP 56

The states of the branching program are the same as those of the branching program
for C, and we define the transitions as follows. Upon reading symbol α ∈ {0, 1}n in
state s, if g(α) = 0 (resp. g(α) = 1), we deterministically go to the state given by
the 0-transition (resp., 1-transition) of C from state s, and if g(α) is a coin flip, then
we put equal probability on these two transitions.

Then, to obtain M , run two independent copies of this branching program (i.e.,
using independent choices for the probabilistic state transitions) and accept if and
only if both of them accept or both of them reject. Now,

∣∣∣ ExpCP[(C ◦ g⊗k) ◦G]− NoiseStabδ[C]
∣∣∣

=
∣∣∣ ExpCP[(C ◦ g⊗k) ◦G]− ExpCP[C ◦ g⊗k]

∣∣∣ (by (4.4))

= 2 ·
∣∣∣ Pr[M ◦G(Ul) = 1]− Pr[M(Un·k) = 1]

∣∣∣
≤ ε. (by pseudorandomness of G)

The lemma follows combining this with Equation (4.3).

4.5.3 Amplification up to 1/2− 1/ poly

In this subsection we sketch our hardness amplification up to 1/2−1/nc, for every
c:

Theorem 4.5.8. If there is a balanced function f : {0, 1}n → {0, 1} in NP that
is (1/3)-hard for size s(n) ≥ nω(1), then for every c > 0 there is a function f ′ :
{0, 1}m → {0, 1} in NP that is (1/2− 1/mc)-hard for size (s(

√
m))Ω(1).

To amplify we use the Tribes function of Ben-Or and Linial [BL90], a monotone
read-once DNF.

Definition 4.5.9. The Tribes function on k bits is:

Tribesk(x1, . . . , xk)
def
=

(x1 ∧ . . . ∧ xb) ∨ (xb+1 ∧ . . . ∧ x2b) ∨ . . . ∨ (xk−b+1 ∧ . . . ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that
(1− 2−b)k/b ≥ 1/2. Note that this makes b = O(log k).

The Tribes DNF has very low noise stability when perturbed with constant noise.

Lemma 4.5.10 ([O’D04, MO03]). For every constant δ > 0,

NoiseStabδ[Tribesk] ≤ 1

kΩ(1)
.
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A key step in our result is that Tribesk is easily computable by a branching
program of size O(k), and therefore we can use Lemma 4.5.7 to fool its expected bias.

We now define the generator we will use in our derandomized direct product
construction.

Definition 4.5.11. Given n and k ≤ 2n, define the generator Γk : {0, 1}m →
({0, 1}n)k as follows:

Γk(x, y)
def
= NW k(x)⊕Nk(y),

where ⊕ denotes bitwise XOR.

We recall the properties of Γ we are interested in:

Lemma 4.5.12. The following hold:

1. Γk is indistinguishability-preserving for size k2.

2. Γk is 2−n-pseudorandom against branching programs of size 2n and block-size n.

3. Γk has seed length m = O(n2).

4. Γk is explicitly computable (see Definition 4.4.2 for the definition of explicit).

Proof. Item (1) follows from Lemma 4.5.3 and the fact that an indistinguishabili-
ty-preserving generator XORed with any fixed string is still indistinguishability-pre-
serving . More specifically, suppose, for the sake of contradiction, that Γk(x, y) =
NW k(x) ⊕ Nk(y) is not indistinguishability-preserving . Then there are functions
f1, . . . , fk and g1, . . . , gk such that for every i the distributions Un·fi(Un) and Un·gi(Un)
are indistinguishable, yet the distributions

(x, y) · f1(NW 1(x)⊕N1(y)) · · · fk(NW k(x)⊕Nk(y))

and
(x, y) · g1(NW 1(x)⊕N1(y)) · · · gk(NW k(x)⊕Nk(y))

are distinguishable (for random x, y). Then, by averaging, they are distinguishable
for some fixed value of y = ỹ. Thus, we obtain a distinguisher between

x · f ′1(NW 1(x)) · · · f ′k(NW k(x))

and
x · g′1(NW 1(x)) · · · g′k(NW k(x))

are distinguishable (for random x), where f ′i(z) = fi(z ⊕ Ni(ỹ)), g′i(z) = gi(z ⊕
Ni(ỹ)). (Note that we hardwire the fixed part of the seed ỹ in the distinguisher.)
Now observe that the indistinguishability of Un · fi(Un) and Un · gi(Un) implies the
indistinguishability of Un · f ′i(Un) and Un · g′i(Un), because the mapping T (u · v) =
(u ⊕ Ni(ỹ)) · v transforms the latter pair of distributions to the former. (There is
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no loss in the circuit size assuming that circuits have input gates for both the input
variables and their negations.) But this is a contradiction because NW is indisting-
uishability-preserving .

Item (2) follow from Theorem 4.5.6 and the fact that XORing with any fixed string
(in particular, NW k(x) for any x) preserves pseudorandomness against branching
programs.

Item (3) is an immediate consequence of the seed lengths of NW k (Lemma 4.5.3)
and Nk (Theorem 4.5.6).

Item (4) follows from the fact that NW k is explicit (Lemma 4.5.3) and Nk is
explicit (Theorem 4.5.6).

Proof of Theorem 4.5.8. Given f : {0, 1}n → {0, 1} that is δ-hard for size s(n) (for
δ = 1/3) and a constant c, let k = nc′ for c′ = O(c) to be determined later. Consider
the function f ′ : {0, 1}m → {0, 1} defined by

f ′ def
= (Tribesk ◦f⊗k) ◦ Γk.

Note that f ′ ∈ NP since f ∈ NP, Tribes is monotone and both Γ and Tribes are
efficiently computable.

We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for
size k2 by Lemma 4.5.12, Lemma 4.5.2 implies that there is a δ′-random function g
(for δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

1

2
− ExpBias

[
(Tribesk ◦ g⊗k) ◦ Γk

]

2
− k

s(n)1/3
(4.5)

for circuits of size Ω
(
s(n)1/3

) − k2 − size(Tribesk). Next we bound the hardness.
By Lemma 4.5.12, we know that Γk is 2−n-pseudorandom against branching pro-
grams of size 2n and block-size n. In particular, since k = poly(n), Γk is 1/k-
pseudorandom against branching programs of size 9k and block-size n. Since, as
we noted before, Tribesk is easily computable by a branching program of size O(k),
we can apply Lemma 4.5.7 (noting that O(k)2 = poly(n) ¿ 2n) in order to bound
ExpBias

[
(Tribesk ◦ g⊗k) ◦ Γk

]
by

√
NoiseStabδ′ [Tribesk] + 2/k. And the noise stabil-

ity inside the square root is at most 1/kΩ(1) by Lemma 4.5.10. Since k = poly(n)
and s(n) = nω(1), the k/s1/3 term in the hardness (4.5) is negligible and we obtain
hardness at least 1/2− 1/kΩ(1).

We now bound the circuit size: Since Tribesk is computable by circuits of size
O(k), and s(n) = nω(1), the size is at least s(n)Ω(1).

To conclude, note that f ′ has input length m = n2 by Lemma 4.5.12. The result
then follows by an appropriate choice of c′ = O(c).
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4.5.4 Using Nondeterminism

In this subsection we discuss how to use nondeterminism to get the following
theorem.

Theorem 4.5.13. If there is a balanced function f : {0, 1}n → {0, 1} in NP that is
(1/3)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in NP that is
(1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Our main observation is that Tribesk is a DNF with clause size O(log k), and there-
fore it is computable in nondeterministic time poly(n) even when k is superpolynomial
in n:

Lemma 4.5.14. Let f : {0, 1}n → {0, 1} be in NP, and let Gk : {0, 1}l → ({0, 1}n)k

be any explicitly computable generator (see Definition 4.4.2) with l ≥ n. Then the

function f ′ def
= (Tribesk ◦f⊗k) ◦Gk is computable in NP for every k = k(n) ≤ 2n.

Proof. We compute f ′(σ) nondeterministically as follows: Guess a clause vi ∧ vi+1 ∧
· · · ∧ vj in Tribesk. Accept if for every h s.t. i ≤ h ≤ j we have f(Xh) = 1, where
G(σ) = (X1, . . . , Xk) and the values f(Xh) are computed using the NP algorithm for
f .

It can be verified that this algorithm has an accepting computation path on input
σ iff f ′(σ) = 1. Note that the clauses have size logarithmic in k, which is polynomial
in n. Moreover, G is explicitly computable. The result follows.

Now the proof of Theorem 4.5.13 proceeds along the same lines as the proof of

Theorem 4.5.8, setting k
def
= s(n)Ω(1).

4.5.5 Amplifying from Hardness 1/ poly

Our amplification from hardness Ω(1) to 1/2−ε (Theorem 4.5.8) can be combined
with O’Donnell’s amplification from hardness 1/ poly to hardness Ω(1) to obtain
an amplification from 1/ poly to 1/2 − ε. However, since O’Donnell’s construction
blows up the input length polynomially, we would only obtain ε = 1/s(nΩ(1)) (where
the hidden constant depends on the initial polynomial hardness) rather than ε =
1/s(

√
n)Ω(1) (as in Theorem 4.5.8). Thus we show here how to amplify directly from

1/ poly to 1/2− ε using our approach. For this we need a combining function C that
is more involved than the Tribes function. The properties of C that are needed in
the proof of Theorem 4.4.1 are captured by the following lemma.

Lemma 4.5.15. For every δ(n) = 1/nO(1), there is a sequence of functions Ck :
{0, 1}k → {0, 1}, such that for every k = k(n) with nω(1) ≤ k ≤ 2n, the following
hold:

1. NoiseStabδ[Ck] ≤ 1/kΩ(1).
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2. For every f : {0, 1}n → {0, 1} in NP and every explicitly computable generator
(see Definition 4.4.2) Gk : {0, 1}l → ({0, 1}n)k with l ≥ n, the function (Ck ◦
f⊗k) ◦Gk is in NP.

3. Ck can be computed by a branching program of size poly(n) · k, and also by a
circuit of size poly(n) · k.

Before proving Lemma 4.5.15, let us see how it can be used to prove our main
theorem.

Theorem 4.5.16 (Thm. 4.4.1, restated). If there is a balanced function f : {0, 1}n →
{0, 1} in NP that is 1/ poly(n)-hard for size s(n), then there is a function f ′ :
{0, 1}m → {0, 1} in NP that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Proof. Let f : {0, 1}n → {0, 1} be a balanced function in NP that is δ = δ(n)-hard

for size s(n), where δ ≥ 1/nO(1). Let k = k(n)
def
= s(n)1/7 and let Ck be the function

guaranteed by Lemma 4.5.15. Let Γk be the the generator from Definition 4.5.11.

Consider the function f ′ : {0, 1}m → {0, 1} defined by f ′ def
= (Ck ◦ f⊗k)◦Γk. Note that

f ′ ∈ NP by Item 2 in Lemma 4.5.15.
We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for

size k2 (by Lemma 4.5.12), Lemma 4.5.2 implies that there is a δ′-random function g
(for δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

α(m) =
1

2
− ExpBias

[
(Ck ◦ g⊗k) ◦ Γk

]

2
− k

s(n)1/3
(4.6)

for circuits of size

s′(m) = Ω

(
s(n)1/3

log(1/δ)

)
− k2 − size(Ck).

We first bound the hardness α(m). By Lemma 4.5.12, we know that Γk is 2−n-
pseudorandom against branching programs of size 2n and block-size n. Since the
branching program for computing Ck has size poly(n) · k, and (poly(n) · k)2 ¿ 2n (by
our choice of k(n)), we may apply Lemma 4.5.7 to bound ExpBias

[
(Ck ◦ g⊗k) ◦ Γk

]

by
√

NoiseStabδ′ [Ck] + 2/2n. This noise stability is at most 1/kΩ(1) by Item 1 in
Lemma 4.5.15. Using the fact that k = s(n)1/7, we have

α(m) ≥ 1

2
−

√
1/kΩ(1) − 2/2n

2
− k

s(n)1/3
=

1

2
− 1

s(n)Ω(1)
.

We now bound the circuit size s′(m). Since Ck is computable by a circuit of size
poly(n) · k (by Item 3 in Lemma 4.5.15) and log(1/δ) = O(log n) and s(n) = nω(1),
we have

s′(m) = Ω

(
s(n)1/3

log n

)
− s(n)2/7 − poly(n) = s(n)Ω(1).
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To conclude, we note that f ′ has input length m = O(n2) by Lemma 4.5.12, so s(n) =
s(Ω(

√
m)) = s(

√
m)Ω(1), and we indeed obtain hardness α(m) = 1/2 − 1/s(

√
m)Ω(1)

for size s′(m) = s(
√

m)Ω(1).

The rest of this subsection is devoted to the proof of Lemma 4.5.15. Recall that
amplification from hardness Ω(1) (Theorem 4.5.8) relies on the fact that the Tribes
DNF has low noise stability with respect to noise parameter δ = Ω(1) (i.e., Lemma
4.5.10). Similarly, to amplify from hardness 1/ poly(n) we need to employ a combining
function that has low noise stability with respect to noise 1/ poly(n). To this end,
following [O’D04], we employ the recursive-majorities function, RMajr. Let Maj
denote the majority function.

Definition 4.5.17. The RMajr function on 3r bits is defined recursively by:

RMaj1(x1, x2, x3)
def
= Maj(x1, x2, x3)

RMajr(x1, . . . , x3r)
def
= RMajr−1

(
Maj(x1, x2, x3), . . . , Maj(x3r−2, x3r−1, x3r)

)

The following lemma quantifies the noise stability of RMajr.

Lemma 4.5.18 ([O’D04], Proposition 11). There is a constant c such that for every
δ > 0 and every r ≥ c · log(1/δ), we have

NoiseStabδ[RMajr] ≤
1

4
.

Note that if r = O(log n) then RMajr is a function of 3r = poly(n) bits.
However, when r = O(log n), RMajr does not have sufficiently low noise stability

to be used on its own. For this reason, we will combine RMaj with Tribes. (The
same combination of RMaj and Tribes is employed by O’Donnell [O’D04], albeit for
a different setting of parameters.)

Proof of Lemma 4.5.15. Given n and δ = δ(n) ≥ 1/nO(1), let r
def
= c · log(1/δ) for a

constant c to be chosen later. Assume, without loss of generality, that r and k/3r are
integers. The function Ck : {0, 1}k → {0, 1} is defined as follows

Ck
def
= Tribesk/3r ◦RMaj⊗k/3r

r .

We now prove that Ck satisfies the required properties.

1. We will use the following result from [O’D04].

Lemma 4.5.19 ([O’D04], Proposition 8). If h is a balanced boolean function
and ϕ : {0, 1}` → {0, 1} is any boolean function, then

NoiseStabδ[ϕ ◦ h⊗`] = NoiseStab 1
2
−NoiseStabδ [h]

2

[ϕ].
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Letting c be a sufficiently large constant (recall that r = c · log(1/δ)), by Lemma
4.5.18 we have that NoiseStabδ[RMajr]/2 ≥ 1/2 − 1/8 ≥ 3/8. Now note that
RMajr is balanced because taking the bitwise complement of an input x also
negates the value of RMajr(x). Hence, by Lemma 4.5.19,

NoiseStabδ[Tribesk/3r ◦RMaj⊗k/3r

r ] = NoiseStab3/8[Tribesk/3r ] ≤ 1

(k/3r)Ω(1)
=

1

kΩ(1)
,

where the last two equalities use Lemma 4.5.10 and the fact that k = nω(1) and
r = O(log n).

2. The proof is similar to the proof of Lemma 4.5.14. In order to compute
(Tribesk/3r ◦RMaj⊗k/3r

r ◦f⊗k) ◦Gk, we guess a clause of the Tribesk/3r and ver-
ify that all the RMajr evaluations feeding into it are satisfied (using the NP
algorithm for f). The only additional observation is that each of the recursive
majorities depends only on 3r = poly(n) bits of the input, and hence can be
computed in time polynomial in n.

3. As noted earlier, Tribesk/3r is easily computable by a branching program of size
O(k). RMajr, on the other hand, can be computed by a branching program
of size poly(n). Indeed, Maj(x1, x2, x3) is clearly computable by a branching
program of constant size c, and thus

RMajr = RMajr−1

(
Maj(x1, x2, x3), . . . , Maj(x3r−2, x3r−1, x3r)

)

can be computed by a branching program whose size is at most c times the
size of RMajr−1. By induction it follows that RMajr can be computed in size
cr = poly(n).

By composing the branching program of size O(k) for Tribes with the branching
program of size poly(n) for RMaj, we can compute Ck by a branching program
of size poly(n) · k.

A natural question is whether one can amplify from hardness 1/nω(1). A modifi-
cation of the [Vio04] negative result about hardness amplification given in [LTW05]
shows that this task cannot be achieved by any black-box hardness amplification com-
putable in the polynomial-time hierarchy (and thus in particular cannot be achieved
by any black-box hardness amplification computable in NP). (See Definition 4.7.2
for the definition of black-box hardness amplification.)
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4.6 Extensions

4.6.1 On Amplifying Hardness up to 1/2− 1/2Ω(n)

Even when starting from a function that is δ-hard for size 2Ω(n), our results (Theo-
rem 4.4.1) only amplify hardness up to 1/2−1/2Ω(

√
n) (rather than 1/2−1/2Ω(n)). In

this section we discuss the possibility of amplifying hardness in NP up to 1/2−1/2Ω(n),
when starting with a function that is δ-hard for size 2Ω(n). The problem is that the
seed length of our generator in Lemma 4.5.12 is quadratic in n, rather than linear.
To amplify hardness up 1/2− 1/2Ω(n) we need a generator (for every k = 2Ω(n)) with
the same properties of the one in Lemma 4.5.12, but with linear seed length.

Recall our generator is the XOR of an indistinguishability-preserving generator
and a generator that is pseudorandom against branching programs. While it is an
open problem to exhibit a generator with linear seed length that is pseudorandom
against branching programs, an indistinguishability-preserving generator with linear
seed length is given by the following lemma.

Lemma 4.6.1. For every constant γ, 0 < γ < 1, there is a constant c such that for

every n there is an explicitly computable generator NW ′
2n/c : {0, 1}l → ({0, 1}n)2n/c

with seed length l = c · n that is indistinguishability-preserving for size 2γ·n.

The generator is due to Nisan and Wigderson [NW94] and Impagliazzo and
Wigderson [IW97]. The approach is the same as for the generator used in Lemma 4.5.3,
except we now require a design consisting of 2Ω(n) sets of size n in a universe of size
O(n), with pairwise intersections of size at most γn/2. An explicit construction of
such a design is given in [GV04].5

Theorem 4.6.2. Suppose that there exists an explicit generator N ′
2n : {0, 1}l →

({0, 1}n)2n

that is 2−n-pseudorandom against branching programs of size 2n and block-
size n and that has seed length l = O(n). Then the following holds: If there is a
balanced function f : {0, 1}n → {0, 1} in NP that is 1/ poly(n)-hard for size 2Ω(n),
then there is a function f ′ : {0, 1}m → {0, 1} in NP that is (1/2− 1/2Ω(n))-hard for
size 2Ω(n).

A slightly more careful analysis shows that all the branching programs consid-
ered in our constructions have width6 much smaller than their size (specifically, the
branching program for Tribes has constant width, and the one for the function in
Lemma 4.5.15, i.e. Tribes composed with RMaj, has width poly(n) independent of
k). Thus to prove the conclusion in the statement of Theorem 4.6.2 it would suffice

5Alternatively, we can use the randomized algorithm described in [IW97] that computes such sets
S1, . . . , SM with probability exponentially close to 1 using O(n) random bits. This is sufficient for
constructing an indistinguishability-preserving generator.

6The width of a branching program is the maximum, over i, of the number of states that are
reachable after reading i symbols.
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to exhibit an explicit pseudorandom generator that fools such restricted branching
programs.

For amplifying from constant hardness, it suffices to instead have a generator
fooling constant-depth circuits of size 2n with seed length O(n). (The generator of
Nisan [Nis91] has seed length poly(n).) The reason is that our proof that PRGs versus
branching programs “fool” the expected bias also works for PRGs versus constant-
depth circuits, provided that the combining function is computable in constant depth.
The Tribes function is depth 2 by definition (but the recursive majorities RMaj is not
constant-depth, and hence this would only amplify from constant hardness).

More generally, we only need, for every constant γ > 0, a generator G : {0, 1}O(n) →
({0, 1}n)k where k = 2γn such that for every δ-random function g,

ExpBias
[
(Ck ◦ g⊗k) ◦G

]
= 2−Ω(n),

where, for example, Ck = Tribesk (when δ is constant). As in the proof of Lemma 4.3.7,
in proving such a statement, it may be convenient to work instead with the (polyno-
mially related) expected collision probability. An important property of Ck = Tribesk

we used in bounding the expected bias with respect to G is that it gives expected bias
2−Ω(n) if G is replaced with a truly random generator (i.e. using seed length n ·k) and
δ is constant. One might try to use a different monotone combining function with
this property, provided it can also be evaluated in nondeterministic time poly(n).

4.6.2 Impagliazzo and Wigderson’s Hardness Amplification

Our framework gives a new proof of the hardness amplification by Impagliazzo &

Wigderson [IW97]. Impagliazzo & Wigderson [IW97] show that if E
def
=DTIME

(
2O(n)

)
contains a function f : {0, 1}n → {0, 1} that requires (in the worst-case) circuits of
size 2Ω(n), then E contains a function f ′ that is

(
1/2− 1/2Ω(n)

)
-hard for circuits of size

2Ω(n). The main contribution in [IW97] is amplification from constant hardness, e.g.
1/3, to

(
1/2− 1/2Ω(n)

)
(amplification from worst-case hardness and constant hardness

was essentially already established in [BFNW93, Imp95a]). The improvement over the
standard Yao XOR Lemma is that the input length of the amplified function increases
only by a constant factor. In this section, we sketch a simple proof of this result
using the framework developed in earlier sections. While other, more recent hardness
amplifications achieving the same result for E are known [STV01, SU00, Uma02],
the original one by Impagliazzo and Wigderson is still interesting because it can
be implemented in “low” complexity classes, such as the polynomial-time hierarchy,
while the others cannot (due to the fact that they actually amplify from worst-case
hardness [Vio04]).

The construction of [IW97] uses an expander-walk generator Wk : {0, 1}l →
({0, 1}n)k, which uses its seed of length l = n + O(k) to do a random walk of length



Chapter 4: Derandomized Hardness Amplification within NP 65

k (started at a random vertex) in a constant-degree expander graph on 2n vertices.
More background on such generators can be found in [Gol99, Sec 3.6.3]. The con-
struction of [IW97] XORs the expander-walk generator with the (first k outputs of
the) indistinguishability-preserving generator from Lemma 4.6.1:

Definition 4.6.3. Let k = c · n for a constant c > 1. Let NW ′′
k : {0, 1}O(n) →

({0, 1}n)k be a generator that is indistinguishability-preserving for size 2n/c as given
by Lemma 4.6.1. The generator IW k : {0, 1}l → ({0, 1}n)k is defined as

IW k(x, y)
def
= NW ′′

k(x)⊕Wk(y).

The seed length of IW k is l = O(n).

Given a function f that is 1/3-hard for size s = 2Ω(n), the Impagliazzo–Wigderson
amplification defines

f ′ def
= (XOR ◦ f⊗k) ◦ IW k : {0, 1}O(n) → {0, 1},

where k = c ·n for a constant c that depends on the hidden constant in the s = 2Ω(n).
They prove the following about this construction.

Theorem 4.6.4 ([IW97]). If there is a function f : {0, 1}n → {0, 1} in E that is
1/3-hard for size 2Ω(n), then there is a function f ′ : {0, 1}m → {0, 1} in E that is
(1/2− 2−Ω(m))-hard for size 2Ω(m).

Proof. By Theorem 4.5.2 there exists a δ′-random function g : {0, 1}n → {0, 1},
where δ′ is a constant, such that the hardness of f ′ : {0, 1}O(n) → {0, 1} is 1/2 −
ExpBias

[
(XOR ◦ g⊗k) ◦ IW k

]− 2−Ω(n) for circuits of size 2Ω(n).
We now bound the hardness. Whenever some IW i(x) falls in the set of inputs of

density 2 · δ′ where the output of g is a coin flip, the bias of (XOR ◦ g⊗k) ◦ IW k is 0.
Therefore

ExpBias
[
(XOR ◦ g⊗k) ◦ IW k

] ≤ Pr
x

[∀i : IW i(x) 6∈ H] ≤ 2−Ω(n),

where in the last inequality we use standard hitting properties of expander walks (see
e.g. [Gol97] for a proof), and take c to be a sufficiently large constant.

4.7 Limits of Monotone Hardness Amplification

4.7.1 On the hypothesis that f is balanced

The hardness amplification results in the previous sections start from balanced
functions. In this section we study this hypothesis. Our main finding is that, while
this hypothesis is not necessary for hardness amplification within NP/ poly (i.e.,



Chapter 4: Derandomized Hardness Amplification within NP 66

non-deterministic polynomial size circuits), it is likely to be necessary for hardness
amplification within NP.

To see that this hypothesis is not necessary for amplification within NP/ poly,
note that if the quantity Prx[f(x) = 1] of the original hard function f : {0, 1}n →
{0, 1} is known, then we can easily pad f to obtain a balanced function f̄ : {0, 1}n+1 →
{0, 1}:

f̄(x, p)
def
=





f(x) if p = 0

0 if p = 1 and x ≤ Prx[f(x) = 1] · 2n

1 if p = 1 and x > Prx[f(x) = 1] · 2n

It is easy to see that f̄ is 1/ poly(n)-hard if f is. Since a circuit can (non-uniformly)
know Prx[f(x) = 1], the following hardness amplification within NP/ poly is a corol-
lary to the proof of Theorem 4.4.1.

Corollary 4.7.1. If there is a function f : {0, 1}n → {0, 1} in NP/ poly that
is 1/ poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in
NP/ poly that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Now we return to hardness amplification within NP. First we note that, in our
results, to amplify the hardness of f : {0, 1}n → {0, 1} up to 1/2 − ε it is only
necessary that Bias [f ] ≤ εc for some universal constant c. The argument is standard
and can be found, for example, in [Tre03].

Combining this observation with the above padding technique, O’Donnell con-
structs several candidate hard functions, one for each “guess” of the bias of the
original hard function. He then combines them in a single function using a different
input length for each candidate; this gives a function that is very hard on average
for infinitely many input lengths. However, this approach, even in conjunction with
derandomization and nondeterminism, cannot give better hardness than 1/2 − 1/n.
(Roughly speaking, if we want to amplify to 1/2 − ε, then we will have at least 1/ε
different candidates and thus the “hard” candidate may have input length n ≥ 1/ε,
which means 1/2− ε ≤ 1/2− 1/n.)

To what extent can we amplifiy the hardness of functions whose bias is unknown?
Non-monotone hardness amplifications, such as Yao’s XOR Lemma, work regardless
of the bias of the original hard function. However, in the rest of this section we show
that, for hardness amplifications that are monotone and black-box, this is impossi-
ble. In particular, we show that black-box monotone hardness amplifications cannot
amplify the hardness beyond the bias of the original function.

We now formalize the notion of black-box monotone hardness amplification and
then state our negative result.

Definition 4.7.2. An oracle algorithm Amp : {0, 1}l → {0, 1} is a black-box β-bias
[δ 7→ (1/2−ε)]-hardness amplification for length n and size s if for every f : {0, 1}n →
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{0, 1} such that Bias [f ] ≤ β and for every A : {0, 1}l → {0, 1} such that

Pr[A(Ul) 6= Ampf (Ul)] ≤ 1/2− ε,

there is an oracle circuit C of size at most s such that

Pr[CA(Un) 6= f(Un)] ≤ δ.

Amp is monotone if for every x, Ampf (x) is a monotone function of the truth
table of f .

Note that if Amp is as in Definition 4.7.2 and if f is δ-hard for size s′ and Bias [f ] ≤
β, then Ampf is (1/2 − ε)-hard for size s′/s: if there were a circuit A of size s′/s
computing Ampf with error probability at most 1/2− ε, then CA would be a circuit
of size s · (s′/s) = s′ computing f with error probability at most δ, contradicting the
hardness of f . The term “black box” refers to the fact that the definition requires
this to hold for every f and A, regardless of whether or not f is in NP and A is a
small circuit.

The following theorem shows that any monotone black-box hardness amplification
up to 1/2− ε must start from functions of bias β ≈ ε.

Theorem 4.7.3. For any constant γ > 0, if Amp is a monotone black-box β-bias
[δ 7→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3 such that
1/2− 4ε > δ + γ, then β ≤ 8ε + O(2−n).

The main ideas for proving this bound are the same as in the negative result for
black-box hardness amplification in [Vio04]: First we show that the above kind of
hardness amplification satisfies certain coding-like properties. Roughly, Amp can be
seen as a kind of list-decodable code where the distance property is guaranteed only
for δ-distant messages with bias at most β (cf. [Tre03]). Then we show that monotone
functions fail to satisfy these properties. The limitation we prove on monotone func-
tions relies on the following corollary to the Kruskal-Katona theorem (see [And02],
Theorem 7.3.1).

Lemma 4.7.4. Let S = {S1, . . . , Sm} be a collection of m subsets Si ⊆ {1, . . . , N},
where |Si| = t. If m ≥ (

N−1
t

)
=

(
1− t

N

) (
N
t

)
then for every integer t′ < t

|{S : |S| = t′, S ⊆ Si for some i}| ≥
(

N − 1

t′

)
=

(
1− t′

N

)(
N

t′

)
.

Let Fp be the uniform distribution on functions f whose truth-tables have relative
Hamming weight exactly p, i.e. Prx[f(x) = 1] = p. We use the above Lemma 4.7.4
to prove the following fact.
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Lemma 4.7.5. Let A : {0, 1}l → {0, 1} be a an oracle function such that for every
x ∈ {0, 1}l, Af (x) is a monotone function of the truth-table of f : {0, 1}n → {0, 1}.
(For example, any monotone black-box hardness amplification Amp satisfies this con-
dition.) Let τ be an integer multiple of 1/2n. Then there is p ∈ {1/2 − τ, 1/2 + τ}
such that:

E
Ul

[
BiasF←Fp [A

F (Ul)]
]
≥ τ.

Proof. We show that for every fixed x ∈ {0, 1}l there is a p ∈ {1/2− τ, 1/2 + τ} such
that BiasF←Fp

[
AF (x)

] ≥ 2τ. The theorem then follows easily. Fix x. For every p
define Sp as the set of functions f in Fp such that Af (x) = 0. Note that

BiasF←Fp

[
AF (x)

]
=

∣∣∣∣1−
2|Sp|
|Fp|

∣∣∣∣ .

If |S1/2+τ | < (1/2 − τ) · |F1/2+τ | then BiasF←F1/2+τ

[
AF (x)

]
> 2τ and we are done.

Otherwise,

|S1/2+τ | ≥ (1/2− τ) · |F1/2+τ | = (1− (1/2 + τ)) ·
(

2n

(1/2 + τ)2n

)
.

View the elements f ∈ Sp as subsets of {1, . . . , 2n} of size exactly p2n in the natural
way; i.e. the subset associated with f is the set of inputs x such that f(x) = 1.
Note that if f ′ ⊆ f ⊆ {1, . . . , 2n} and Af (x) = 0 then by the monotonicity of A,
Af ′(x) = 0. Therefore, by Lemma 4.7.4,

|S1/2−τ | ≥ (1− (1/2− τ)) ·
(

2n

(1/2− τ)2n

)
= (1/2 + τ) · |F1/2−τ |,

and so BiasF←F1/2−τ

[
AF (x)

] ≥ 2τ .

The following lemma captures the coding-like properties of monotone, black-box
hardness amplifications — it shows that it is very unlikely that Ampf for a “random
f” will land in any fixed Hamming ball of radius 1/2− ε. For two functions f1, f2, let

Dist denote the relative Hamming distance of their truth tables, i.e. Dist(f1, f2)
def
=

Prx[f1(x) 6= f2(x)].

Lemma 4.7.6. Let γ > 0 be any fixed constant. Let Amp be a monotone black-box
8ε-bias [δ 7→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3, where
1/2 − 4ε > δ + γ, and let ε > 0 be an integer multiple of 1/2n. Then for both p in
{1/2− 4ε, 1/2 + 4ε} and every function G:

Pr
F←Fp

[Dist(G,AmpF ) ≤ 1/2− ε] ≤ 2−Ω(2n).
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Proof. Let N
def
= 2n. For every function f of bias at most 8ε such that Dist(G,Ampf ) ≤

1/2 − ε, there must exist a circuit of size s, with oracle access to G, that computes
f with error at most δ. Therefore, since there are 2O(s log s) circuits of size s and
no more than 2H(δ)N functions that are at distance at most δ from f , there are at
most 2O(s log s)2H(δ)N such functions. Thus, when we restrict our attention to the

(
N
pN

)
functions in Fp (for p ∈ {1/2− 4ε, 1/2 + 4ε}), we have:

Pr
F←Fp

[Dist(G,AmpF ) ≤ 1/2− ε] ≤ 2O(s log s) · 2H(δ)N

(
N
pN

)

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(p))N

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(1/2−4ε))N

≤ 2−Ω(N).

Where the second inequality follows from the fact that
(

N
pN

) ≥ 2H(p)N/(N + 1),

and the last inequality uses the fact that 1/2 − 4ε > δ + γ implies H(1/2 − 4ε) >
H(δ) + Ω(1).

Proof of Theorem 4.7.3. We assume that ε is a positive integer multiple of 1/2n and
show that β ≤ 8ε. The theorem then follows for general ε by rounding it up to the
next integer multiple of 1/2n. We show that β = 8ε is impossible, and therefore that
β < 8ε (because any β′-bias hardness amplification is clearly also a β-bias hardness
amplification for every β ≤ β′).

Suppose, for the sake of contradiction, that β = 8ε.
By Lemma 4.7.5, we may choose p ∈ {1/2− 4ε, 1/2 + 4ε} such that

E
Ul

[
BiasF←Fp [AmpF (Ul)]

]
≥ 4ε.

Define the function G(x)
def
= MajF←Fp

AmpF (x), and consider

Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]. (4.7)
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We have:

Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]

= E
Ul

[
Pr

F←Fp

[AmpF (Ul) 6= G(Ul)]
]

= E
Ul

[1

2
− BiasF←Fp [AmpF (Ul)]

2

]
(by def. of bias and G)

=
1

2
−

EUl

[
BiasF←Fp [AmpF (Ul)]

]

2

≤ 1

2
− 2ε (by the choice of p)

On the other hand, Lemma 4.7.6 implies that Quantity (4.7) is at least 1/2 −
ε− 2Ω(2n) (note that the hypothesis of the lemma is satisfied by our assumption that
1/2− 4ε ≥ δ + γ).

Combining the two bounds, we have that

1/2− 2ε ≥ Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)] ≥ 1/2− ε− 2−Ω(2n),

which is a contradiction for sufficiently large n (by the assumption that ε is a
positive multiple of 1/2n).

4.7.2 Nondeterminism is necessary

In this subsection we show that deterministic, monotone, non-adaptive black-box
hardness amplifications cannot amplify hardness beyond 1/2 − 1/ poly(n). Thus,
the use of nondeterminism in our results (Section 4.5.4) seems necessary. Note that
most hardness amplifications, including the one in this chapter, are black-box and
non-adaptive.

O’Donnell [O’D04] proves that any monotone “direct product construction” (i.e.
f ′(x1, . . . , xk) = C(f(x1), . . . , f(xk)), as in Equation 4.1) cannot amplify to hardness
better than 1/2 − 1/n, assuming that the amplification works for all functions f
(not necessarily in NP). We relax the assumption that the hardness amplification is
a direct product construction (allowing any monotone nonadaptive oracle algorithm
f ′ = Ampf ). On the other hand, we require that the reduction proving its correctness
is also black-box (as formalized in Definition 4.7.2).

We prove our bound even for hardness amplifications that amplify only balanced
functions (i.e. β = 0 in Definition 4.7.2).
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Theorem 4.7.7. For every constant δ < 1/2, if Amp is a black-box 0-bias [δ 7→
(1/2− ε)]-hardness amplification for length n and size s ≤ 2n/3 such that for every x,
Ampf (x) is a monotone function of k ≤ 2n/3 values of f , then

ε ≥ Ω

(
log2 k

k

)
.

The proof of this result follows closely the proof of the negative result on hardness
amplification in [Vio04]. The main difference is here we use bounds on the noise
stability of monotone functions rather than constant depth circuits.

The following lemma is similar to Lemma 4.7.6. The only difference is in consider-
ing functions F at distance η from f ; this will correspond to perturbing the monotone
amplification-function with noise having parameter η.

Lemma 4.7.8. Let Amp be as in Definition 4.7.2 with β = 0 and s ≤ 2n/3. Then
for any constant δ < 1/2 there is a constant η < 1/2 such that, for sufficiently large
n, the following holds: If f : {0, 1}n → {0, 1} is any fixed balanced function and
F : {0, 1}n → {0, 1} is a random balanced function such that Dist(f, F ) = η, then

Pr
F

[Dist(Ampf ,AmpF ) ≤ 1/2− ε] ≤ ε.

Proof. Let N
def
= 2n. It is easy to see that F is uniform on a set of size

(
N/2
ηN/2

)2
. The

rest of the proof is like the proof of Lemma 4.7.6:

Pr[Dist(Ampf ,AmpF ) ≤ 1/2− ε] ≤ 2O(s log s)2H(δ)N

(
N/2
ηN/2

)2

≤ 2O(s log s) · (N/2 + 1)2 · 2(H(δ)−H(η))N

≤ ε,

where the last inequality holds for a suitable choice of η < 1/2, using the fact that
δ < 1/2 is a constant and that s ≤ 2n/3.

Proof of Theorem 4.7.7. Let η be the constant in Lemma 4.7.8. The idea is to con-
sider

Pr
Ul,F,F ′

[AmpF (Ul) 6= AmpF ′(Ul)], (4.8)

where F is a random balanced function and F ′ is a random balanced function such
that Dist(F, F ′) = η.

By the above lemma, the probability (4.8) is at least 1/2− 2ε.
On the other hand, for every fixed x, AmpF (x) is a monotone function depending

only on k bits of the truth-table of the function F . Since k is small compared to 2n,



Chapter 4: Derandomized Hardness Amplification within NP 72

the distribution (F, F ′) induces on the input of AmpF (x) a distribution very close to
(Uk, Uk ⊕ µ), where µ is a noise vector with parameter η. Specifically, it can be verified
that the statistical difference between these two distributions is at most O(k2/(η2n)).
Because this value is dominated by log2 k/k when k ≤ 2n/3, and because AmpF (x)
is a monotone function of k bits, we may apply Theorem 4.3.10 to conclude that the
probability (4.8) is at most 1/2−O(log2 k/k).

Combining the two bounds, we have that 1/2 − O(log2 k/k) ≥ 1/2 − 2ε and the
results follows.



Chapter 5

Constant-Depth Circuits for Finite
Field Arithmetic

5.1 Introduction

Finite fields have a wide variety of applications in computer science, ranging from
Coding Theory to Cryptography to Complexity Theory. In this chapter we study the
complexity of arithmetic operations in finite fields.

When considering the complexity of finite field arithmetic, there are two distinct
problems one must consider. The first is the problem of actually constructing the
desired finite field, F; for example, one must find a prime p in order to realize the
field Fp as Z/pZ. The second is the problem of performing arithmetic operations,
such as addition, multiplication and exponentiation in the field F. In this work, we
focus on this second problem, and restrict our attention to fields F where a realization
of the field can be found very easily, or where a realization of F is given as part of
the input.

Specifically, we will focus on finite fields of characteristic two; that is, finite fields
F2n having 2n elements. In particular, the question we address is: To what extent
can basic field operations (e.g., multiplication, exponentiation) in F2n be computed
by constant-depth circuits? In our work, we consider three natural classes of un-
bounded fan-in constant-depth circuits: circuits over the bases {∧,∨} (i.e., AC0),
{∧,∨,Parity} (i.e., AC0[⊕]), and {∧,∨,Majority} (i.e., TC0). Moreover, we will fo-
cus on uniform constant-depth circuits, although we defer the discussion of uniformity
until the paragraph “Uniformity” later in this section. Recall that, for polynomial-size
circuits, AC0 ( AC0[⊕] ( TC0 ⊆ logarithmic space, where the last inclusion holds
under logarithmic-space uniformity and the separations follow from works by Furst
et al. [FSS84] and Razborov [Raz87], respectively (and hold even for non-uniform
circuits). (Some additional background on constant-depth circuits is given in Section
2.4.)

73
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Field Operations. Recall that the finite field F2n of characteristic two is generally
realized as F2[x]/(f(x)) where f(x) ∈ F2[x] is an irreducible polynomial of degree n.
Thus, field elements are polynomials of degree at most n− 1 over F2, addition of two
field elements is addition in F2[x] and multiplication of field elements is carried out
modulo the irreducible polynomial f(x). Throughout, we identify a field element α =
an−1x

n−1 + · · ·+ a1x+ a0 ∈ F2n with the n-dimensional bit-vector (a0, a1, . . . , an−1) ∈
{0, 1}n, and we assume that all field elements that are given as inputs or returned as
outputs of some computation are of this form.

In such a realization of F2n , addition of two field elements is just component-
wise XOR and therefore trivial, even for AC0 circuits. It is also easy to establish
the complexity of Iterated Addition, i.e. given α1, α2, . . . , αt ∈ F2n , computing α1 +
α2 + · · · + αt ∈ F2n . This is easily seen to be computable by AC0[⊕] circuits of size
poly(n, t). On the other hand, since parity is a special case of Iterated Addition,
the latter requires AC0 circuits of size poly(n, 2tε) (see e.g. [H̊as87]). Thus, we
concentrate on the following multiplicative field operations:

• Iterated Multiplication: Given α1, α2, . . . , αt ∈ F2n , compute α1 ·α2 · · ·αt ∈ F2n .

• Exponentiation: Given α ∈ F2n , and a t-bit integer k, compute αk ∈ F2n .

The goal is to compute these functions as efficiently as possible for given parame-
ters n, t. We note that these functions can be computed in time poly(n, t) (using the
repeated squaring algorithm for exponentiation). In this work we ask what the small-
est constant-depth circuits are for computing these functions. Note that computing
Iterated Multiplication immediately implies being able to compute the product of
two given field elements. While solving this latter problem is already non-trivial (for
Dlogtime-, or even logspace-uniform constant-depth circuits), we will not address it
separately.

Our Results. We present two different types of results. The first concerns field
operations in a specific realization of F2n , which we denote F̃2n . The second type
concerns field operations in an arbitrary realization of F2n as F2[x]/(f(x)), where we
assume that the irreducible polynomial f(x) is given as part of the input. We describe
both of these kinds of results in more detail below. Then we discuss some applications
of our results.

Results in the specific representation F̃2n : In this setting, we assume that n is
of the form n = 2 · 3`, for some non-negative integer `, and we employ the explicit
realization of F2n given by F2[x]/(f(x)) where f(x) is the irreducible polynomial
x2·3`

+ x3`
+ 1 ∈ F2[x]. Our results are summarized in Table 5.1.

We show that exponentiation can be computed by uniform TC0 circuits of size
poly(n, t) (i.e. what is achievable by standard unbounded-depth circuits). To the
best of our knowledge, prior to this work it was not even known how to compute
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AC0 AC0[⊕] TC0

Addition: poly(n) poly(n) poly(n)

α, β ∈ F̃2n → α + β ∈ F̃2n [Folklore] [Folklore] [Folklore]

Iterated Addition: poly(n, 2tε) poly(n, t) poly(n, t)

α1, . . . , αt ∈ F̃2n → ∑
i≤t αi ∈ F̃2n [Folklore] [Folklore] [Folklore]

Multiplication: poly(2nε
) poly(n) poly(n)

α, β ∈ F̃2n → α · β ∈ F̃2n [Cor. 5.2.6 (1)] [Thm. 5.2.4 (1)] [HAB02]

Iterated Multiplication: poly(2nε
, 2tε) poly(n, 2tε) poly(n, t)

α1, . . . , αt ∈ F̃2n → ∏
i≤t αi ∈ F̃2n [Cor. 5.2.6 (1)] [Thm. 5.2.4 (1)] [HAB02]

Exponentiation: poly(2nε
, 2tε) poly(n, 2tε) poly(n, t)

α ∈ F̃2n , t-bit k ∈ Z→ αk ∈ F̃2n [Cor. 5.2.6 (2)] [Thm. 5.2.4 (2)] [Thm. 5.2.3 (2)]

In the above, ε > 0 is arbitrary, but the circuits have depth O(1/ε).

Table 5.1: Complexity of Operations in F̃2n ≡ F2[x]/(x2·3l
+ x3l

+ 1).

exponentiation in logarithmic space, i.e. space O(log(n + t)), over any finite field of
size 2Ω(n). As a corollary, we improve upon a theorem of Agrawal et al. [AAI+01]
concerning exponentiation in uniform AC0. In the case of iterated multiplication of t
field elements, results of Hesse et al. [HAB02] imply that this problem can be solved
by uniform TC0 circuits of size poly(n, t).

We also show that, for every ε > 0, iterated multiplication and exponentiation can
be computed by uniform AC0[⊕] circuits of size poly(n, 2tε). Moreover, we show that
this is tight: neither iterated multiplication nor exponentiation can be computed by
(nonuniform) AC0[⊕] circuits of size poly(n, 2to(1)

).
Results in arbitrary representation F2[x]/(f(x)): In this setting we assume that

the irreducible polynomial f(x) is arbitrary, but is given to the circuit as part of the
input. Our results are summarized in Table 5.2.

We show (with a more complicated proof than in the specific representation case)
that iterated multiplication can be computed by uniform AC0[⊕] circuits of size
poly(n, 2tε), and this is again tight. We show that exponentiation can be computed
by uniform AC0[⊕] circuits of size poly(n, 2t), but we do not know how to match the
size poly(n, 2tε) achieved in the specific representation case. More dramatically, we do
not know if there exist poly(n, 2o(t))-size TC0 circuits for exponentiation. While we
cannot establish a lower bound for exponentiation, we observe that testing whether
a given F2[x] polynomial of degree n is irreducible can be AC0[⊕] reduced to com-
puting exponentiation in a given representation of F2n , for exponents with t = n
bits. Specifically, a modification of Rabin’s irreducibility test [Rab80, MS83] gives a
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AC0 AC0[⊕] TC0

Addition: poly(n) poly(n) poly(n)

α, β ∈ F2n → α + β ∈ F2n [Folklore] [Folklore] [Folklore]

Iterated Addition: poly(n, 2tε) poly(n, t) poly(n, t)

α1, . . . , αt ∈ F2n → ∑
i≤t αi ∈ F2n [Folklore] [Folklore] [Folklore]

Multiplication: poly(2nε
) poly(n) poly(n)

α, β ∈ F2n → α · β ∈ F2n Cor. to [HAB02] [Thm. 5.2.7 (1)] [HAB02]

Iterated Multiplication: poly(2nε
, 2tε) poly(n, 2tε) poly(n, t)

α1, . . . , αt ∈ F2n → ∏
i≤t αi ∈ F2n Cor. to [HAB02] [Thm. 5.2.7 (1)] [HAB02]

Exponentiation: poly(2nε
, 22εt

) poly(n, 2t) poly(n, 2t)

α ∈ F2n , t-bit k ∈ Z→ αk ∈ F2n Cor. to [HAB02] [Thm. 5.2.7 (2)] [HAB02]

In the above, ε > 0 is arbitrary, but the circuits have depth O(1/ε).

Table 5.2: Complexity of Operations in F2n ≡ F2[x]/(f(x)) for given f(x) of degree n.

TC0 reduction; we show a finer analysis that gives a AC0[⊕] reduction. Thus, any
improvement on our results for exponentiation modulo a given (irreducible) polyno-
mial of degree at most n would yield an upper bound on the complexity of testing
irreducibility of a given F2[x] polynomial. Some lower bounds for the latter prob-
lem are given in the recent work of Allender et. al. [ABD+03]. However, it is still
open whether irreducibility of a given degree-n polynomial in F2[x] can be decided
by AC0[⊕] circuits of size poly(n).

We now discuss several applications of our results in the specific representation
F̃2n .

AE = Dlogtime-uniform TC0: Frandsen, Valence and Barrington [FVB94] study
the relationship between uniform TC0 and the class AE of functions computable
by certain arithmetic expressions (defined in Section 5.2.3). Remarkably, they show
that Dlogtime-uniform TC0 is contained in AE. Conversely, they show that AE is
contained in P -uniform TC0, but they leave open whether the inclusion holds under
Dlogtime uniformity. We show that AE is in fact contained in Dlogtime-uniform
TC0, thus proving that AE = Dlogtime-uniform TC0. (See paragraph “Uniformity”
for a discussion of Dlogtime-uniformity.)

“Pseudorandom” Generators : We implement certain “pseudorandom” generators
in Dlogtime-uniform constant-depth circuits. Specifically, we show how a construc-
tion of k-wise independent generators from [CG89, ABI86] can be implemented in
uniform AC0[⊕], and how a construction of ε-biased generators from [AGHP92] can
be implemented in uniform TC0. These constructions address a problem posed by
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Gutfreund and Viola [GV04].

Overview of Techniques. Our results for the specific field representation F̃2n =
F2[x]/(x2·3`

+x3`
+1) exploit the special structure of the irreducible polynomial x2·3`

+
x3`

+ 1 ∈ F2[x]. The crucial observation (Fact 5.3.1) is that the order of x modulo
x2·3`

+ x3`
+ 1 is small and is easily computed, namely it is 3l+1. Thus, we are able to

compute large powers of the element x ∈ F̃2n by considering the exponent k modulo
the order of x. To better illustrate this idea we now sketch a proof of the fact that
exponentiation over F̃2n can be computed by uniform TC0 circuits of size poly(n, t).
Let α ∈ F̃2n and an exponent 0 ≤ k < 2t be given. We think of α as a polynomial
α(x) ∈ F2[x]. Writing k in binary as k = kt−1kt−2 · · · k0 =

∑
i<t ki2

i where ki ∈ {0, 1},
we have:

α(x)k = α(x)

∑
i<t

ki2
i

=
∏
i<t

α(x)ki2
i

=
∏
i<t

α
(
x2i

)ki

where the last equality follows from the fact that we are working in characteristic 2.
Using the fact that the iterated product of t field elements is computable by uniform
TC0 circuits of size poly(n, t) (which follows from results in [HAB02]), all that is left
to do is to show how to compute α(x2i

)ki . Since ki ∈ {0, 1}, the only hard step of this
is computing x2i

which can be done using the fact, discussed above, that the order of
x is 3l+1. Specifically, first we reduce 2i mod 3l+1 using results about the complexity
of integer arithmetic by Hesse et. al. [HAB02]. After the exponent is reduced, we
show that computing the corresponding power of x is easy.

To prove that AE = Dlogtime-uniform TC0 we also show that F̃2n has an easily
computable dual basis (as a vector-space over F2).

The other techniques we use are based on existing algorithms in the literature,
e.g. [Kun74, Sie72, Rei86, Ebe89]. Our main contribution here is noticing that for
some settings of parameters they can be implemented in AC0[⊕] and moreover that
they give tight results for AC0[⊕]. We now describe these techniques in more detail.

In the case of arbitrary realizations of F2n as F2[x]/(f(x)), the main technical
challenge is reducing polynomials modulo f(x). Previous work has addressed this
problem and shown how (over arbitrary fields) this can be solved by uniform log-
depth circuits (of fan-in 2) [Rei86, Ebe89], and even by uniform TC0 circuits [HAB02].
The approach that is usually taken is to give a parallel implementation of the Kung-
Sievking algorithm [Kun74, Sie72] to reduce polynomial division to the problem of
computing small powers of polynomials. However, this reduction requires summations
of poly(n) polynomials, which is why previous results only give implementations in
log-depth or by TC0 circuits. We take the same approach in our Lemma 5.4.1;
however, we observe that in our setting we may compute these large summations
using parity gates. This allows us to implement polynomial division over F2[x] in
AC0[⊕].

Both in our results for F̃2n and for arbitrary realizations of F2n , we make use



Chapter 5: Constant-Depth Circuits for Finite Field Arithmetic 78

of the Discrete Fourier Transform (DFT). This allows us to reduce the problem of
multiplication or exponentiation of polynomials to the problem of multiplying or
exponentiating field elements in fields of size poly(n) (and these problems are feasible
for AC0 circuits). Eberly [Ebe89] and Reif [Rei86] have also employed the DFT in
their works on performing polynomial arithmetic in log-depth circuits. However, as
with polynomial division in F2[x], the fact that we are working with polynomials over
F2 allows us to compute the DFT and inverse DFT in uniform AC0[⊕] (and not just
in log-depth or TC0).

Other Related Work: Works by Reif [Rei86] and Eberly [Ebe89] show how basic
field arithmetic can be computed by log-depth circuits, and the results of Hesse, Al-
lender and Barrington [HAB02] imply that some field arithmetic can be accomplished
by uniform TC0. Indeed, the main result of [HAB02] states that integer division can
be computed by (uniform) TC0 circuits, and hence addition and multiplication in the
field Fp ' Z/pZ can be accomplished (in TC0) by adding or multiplying elements as
integers and then reducing the result modulo p using the division result. Other results
from [HAB02] imply that uniform TC0 circuits can compute iterated multiplication
in (arbitrary realizations of) F2n . Some results on the complexity of arithmetic in
finite fields of unbounded characteristic are given in [SF93].

Uniformity. In the previous discussion we refer to uniform circuits for the var-
ious problems we consider. When working with restricted circuit classes, such as
AC0, AC0[⊕] and TC0, one must be careful not to allow the machine construct-
ing the circuits to be more powerful than the circuits themselves. Indeed, one
of the significant technical contributions of [HAB02] is showing that integer divi-
sion is in uniform TC0 under a very strong notion of uniformity, namely Dlogtime-
uniformity [BIS90]. Dlogtime-uniformity, which is described briefly in Section 2.4, has
become the generally-accepted convention for uniformity in constant-depth circuits
[BIS90, FVB94, HAB02]. One reason for this is that Dlogtime-uniform constant-depth
circuits have several elegant characterizations (see, e.g., [BIS90]); in fact, our results
will prove yet another such characterization, namely Dlogtime-uniform TC0 = AE.
Unless otherwise specified, in this work “uniform” always means “Dlogtime-uniform”.

If one is willing to relax the uniformity condition to polynomial-time-uniformity,
then some of our results on arithmetic in F̃2n can be proved more easily. For instance,
the exponentiation result requires computing x2i ∈ F̃2n for a given i. Instead of
actually computing x2i

in the circuit, these values could be computed in polynomial
time and then hardwired into the circuit. In contrast, in the case of our results in
arbitrary realizations of F2n , we do not know how to improve any of our results, even
if we allow non-uniform circuits. If on the other hand, one allows non-uniformity that
depends on the irreducible polynomial f(x), then one can simplify some the proofs,
and can actually improve the exponentiation result to match the parameters that we
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achieve in F̃2n (by hardwiring the values x2i
into the circuit, as above).

5.2 Our Results

In this section we formally state our results. In Section 5.2.1 we discuss our
results in the specific case where n is of the form n = 2 · 3l, and F2n is realized as
F2[x]/(x2·3`

+ x3`
+ 1), i.e. using the explicit irreducible polynomial x2·3`

+ x3`
+ 1 ∈

F2[x]. In Section 5.2.2 we discuss our results in realizations of F2n as F2[x]/(f(x)) for
an arbitrary irreducible polynomial f(x) ∈ F2[x] that is given as part of the input.
Then we discuss applications of our results. In Section 5.2.3 we prove that uniform
TC0 = AE. In Section 5.2.4 we exhibit k-wise independent and ε-biased generators
that are bitwise computable by uniform AC0[⊕] and TC0 circuits.

5.2.1 Field Arithmetic in F̃2n

Below we summarize our main results concerning arithmetic in the field F̃2n , de-
fined below.

Fact 5.2.1 ([van99], Theorem 1.1.28). For all integers l ≥ 0, the polynomial x2·3`
+

x3`
+ 1 ∈ F2[x] is irreducible.

Definition 5.2.2. For n of the form n = 2 · 3`, we define F̃2n to be the specific
realization of F2n given by

F̃2n
def
= F2[x]/(x2·3`

+ x3`

+ 1).

The next theorem states our results about field arithmetic over F̃2n in uniform
TC0. The first item follows from results of Hesse, Allender and Barrington [HAB02];
nonetheless, we state it for the sake of comparison with our other results.

Theorem 5.2.3. Let n = 2 · 3l. There exist uniform TC0 circuits of size poly(n, t)
that perform the following:

1. [HAB02] Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

In particular, uniform TC0 circuits of polynomial size are capable of performing
iterated multiplication and exponentiation in F̃2n that match the parameters that can
be achieved by standard unbounded-depth circuits.

The next theorem states our results about field arithmetic over F̃2n in uniform
AC0[⊕].

Theorem 5.2.4. Let n = 2 · 3l. Then, for every constant ε > 0, there exist uniform
AC0[⊕] circuits of size poly(n, 2tε) that perform the following:
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1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

While these parameters are considerably worse than for TC0 circuits, they are
tight:

Theorem 5.2.5. For every constant d there is ε > 0 such that, for sufficiently large
t and n = 2 · 3l, the following cannot be computed by (nonuniform) AC0[⊕] circuits
of depth d and size 22εn · 2tε:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

In fact, Item (1) in the above negative result holds for any sufficiently large field
(i.e. not only F̃2n); and Item (2) holds for fields of a variety of different sizes. Both
of these generalizations will be apparent from the proof.

By “scaling down” Theorem 5.2.3 (as described in Section 2.4) we obtain the
following:

Corollary 5.2.6. Let n = 2 · 3l. Then, for every constant ε > 0, there exist uniform
AC0 circuits of size poly(2nε

, 2tε) that perform the following:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

This improves upon a theorem of Agrawal et al. [AAI+01] showing that field
exponentiation is computable by uniform AC0 circuits of size poly(2n, 2t) (as opposed
to poly(2nε

, 2tε) in our result). Corollary 5.2.6 is also tight for many settings of
parameters (see Theorem 5.2.5).

5.2.2 Field Arithmetic in Arbitrary Realizations of F2n

As noted above, one of the advantages of working with the field F̃2n is that we
achieve tight results for TC0, AC0[⊕] and AC0. However, the use of F̃2n requires
that n = 2 · 3`, and thus does not allow for the construction of F2n for all n; moreover
some applications may require field computations in a specific field F2[x]/(f(x)) for
some given irreducible polynomial f(x) other than x2·3`

+ x3`
+ 1. Thus we are led

to study the complexity of arithmetic in the ring F2[x]/(f(x)) where the polynomial
f(x) ∈ F2[x] is given as part of the input. If, in addition, we have the promise that
f(x) is irreducible, then this corresponds to arithmetic in the field F2n ' F2[x]/(f(x)).

Theorem 5.2.7.



Chapter 5: Constant-Depth Circuits for Finite Field Arithmetic 81

1. For every constant ε > 0, there exist uniform AC0[⊕] circuits of size poly(n, 2tε)
that perform the following: Given f(x) ∈ F2[x] of degree n and α1, α2, . . . , αt ∈
F2[x]/(f(x)), compute α1 · α2 · · ·αt ∈ F2[x]/(f(x)).

2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that perform the follow-
ing: Given f(x) ∈ F2[x] of degree n, α ∈ F2[x]/(f(x)) and a t-bit integer k,
compute αk ∈ F2[x]/(f(x)).

Since Item 1 of Theorem 5.2.5 actually holds for any realization of F2n , and not
just for F̃2n (as noted in the proof), Item 1 of Theorem 5.2.7 is tight.

Unlike Item 2 in Theorem 5.2.4, Exponentiation now requires size poly(n, 2t),
instead of poly(n, 2tε). We do not know how to improve this to size poly(n, 2o(t)),
even for TC0 circuits. On the other hand, we show that testing irreducibility of a
given F2[x] polynomial is AC0[⊕] reducible to computing exponentiation modulo a
given irreducible polynomial.

Theorem 5.2.8. The problem of determining whether a given polynomial f(x) ∈
F2[x] of degree n is irreducible, is poly(n)-size AC0[⊕]-reducible to the following prob-
lem: Given an irreducible polynomial f(x) ∈ F2[x] of degree n, compute the conjugates
x, x2, x22

, . . . , x2n−1
(mod f(x)).

5.2.3 AE = Dlogtime uniform TC0

Frandsen, Valence and Barrington [FVB94] study the relationship between uni-
form TC0 and the class AE of functions computable by certain arithmetic expressions
(defined below). Remarkably, they show that Dlogtime-uniform TC0 is contained in
AE. Conversely, they show that AE is contained in P -uniform TC0, but they leave
open whether the inclusion holds for Dlogtime uniformity. We show that AE is in
fact contained in Dlogtime-uniform TC0, thus proving that AE = Dlogtime-uniform
TC0. (All these inclusions between classes hold in a certain technical sense that is
made clear below.)

We now briefly review the definition of AE and then state our results.

Definition 5.2.9 ([FVB94]). Let I be an infinite set of formal indices. The set of
formal arithmetic expressions is defined as follows. The basic expressions are x (we
think of this as the field element x), and Input (we think of this as the input field
element). If e, e′ are expressions (possibly containing the unbound index i ∈ I), then
we may form new composite expressions

∑u
i=1 e,

∏u
i=1 e, e + e′, e · e′, e2i

, where i ∈ I
and u is either an index, i.e. u ∈ I, or is any polynomial in n (we think of n as the
input length).

An arithmetic expression is well-formed if all indices are bound and they are bound
in a semantically sound way (we omit details).
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We associate to every well-formed arithmetic expression e a family of functions
f e

n : F̃2n → F̃2n, for every n of the form n = 2 · 3` (note that all computations are
performed over the field F̃2n).

The complexity class AE consists of those families of functions fn : F̃2n → F̃2n

that are described by arithmetic expressions (for every n of the form n = 2 · 3`).

For example, the trace function, tr : F̃2n → F2 ⊆ F̃2n , defined by tr(Input)
def
=∑n−1

i=0 Input2i

, is in AE.

Theorem 5.2.10. AE = Dlogtime−uniform TC0 in the following sense:
Let f : {0, 1}n → {0, 1}n be in Dlogtime-uniform TC0. Then there is f ′ : F̃2n →

F̃2n in AE such that for every n of the form 2 · 3l, and for every x of length n,
f(x) = f ′(x).

Conversely, let f : F̃2n → F̃2n be in AE. Then there is f ′ : {0, 1}n → {0, 1}n in
Dlogtime-uniform TC0 such that for every n of the form 2 · 3l, and for every x of
length n, f(x) = f ′(x).

Remark 5.2.11. Our definition of arithmetic expressions is slightly different from
the definition in [FVB94], which we denote [FVB94]-arithmetic expressions. We now
argue that our definition only makes our results hold in a sense that is stronger than
that in [FVB94]. From a syntactical point of view, [FVB94]-arithmetic expressions
may use a special element g, which intuitively corresponds to our x. Then, from
a semantical point of view, to define the class of functions [FVB94]-AE computed
by [FVB94]-arithmetic expressions, they fix a certain representation of finite fields,
which in particular fixes the element g. Their inclusion “uniform TC0 is contained in
[FVB94]-AE” only holds after a particular representation has been fixed. Roughly,
the representation fixes g such that g, g2, g4, . . . , g2n−1

is a self-dual normal basis for
the field. We note that computing such a g requires a lot of machinery, and it is not
known (to the best of our knowledge) how to do it in, say, Dlogtime-uniform TC0.
On the other hand, in our results we work over the standard representation of finite
fields modulo the irreducible polynomial x2·3`

+ x3`
+ 1, and we set g = x; it is easy to

see that our representation is easily computable.

Remark 5.2.12. It is perhaps unsatisfactory that Theorem 5.2.10 only holds for
certain input lengths. However, even the results in [FVB94] only hold for certain
input lengths, though they are more “dense” than ours.

5.2.4 k-wise and ε-biased generators

We use our results on computing field operations to give constant-depth implemen-
tations of certain pseudorandom generators, namely k-wise independent and ε-biased
generators (see Definitions 2.2.1 and 2.1.1. The complexity of these generators is also
studied by Gutfreund and Viola [GV04]. Our results will complement some of the
results in [GV04] (see the remark at the end of this section).
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Using our results on field operations we obtain the following results. Note both
constructions are optimal up to constant factors (cf. [CGH+85, AGHP92]).

Theorem 5.2.13.

1. For every k and m there is a k-wise independent generator G : {0, 1}s →
{0, 1}m, with s = O(k log m) that is bitwise computable by uniform AC0[⊕]
circuits of size poly(s, log m) = poly(s).

2. For every ε and m, there is an ε-biased generator G : {0, 1}s → {0, 1}m with
s = O(log m + log(1/ε)) that is bitwise computable by uniform TC0 circuits of
size poly(s, log m) = poly(s).

Remark 5.2.14. A previous and different construction of k-wise independent gener-
ators in [GV04] matches (up to constant factors) Item 1 in Theorem 5.2.13 for the
special case k = O(1). The construction in Item 1 in Theorem 5.2.13 improves on the
construction in [GV04] for k = ω(1). Also, in [GV04] they exhibit a construction of
ε-biased generators computable by uniform AC0[⊕] circuits (while the construction in
Item 2 in Theorem 5.2.13 uses TC0 circuits). However, the construction in [GV04]
has worse dependence on ε.

5.3 Arithmetic in F̃2n

In this section we prove our results about field arithmetic in the field F̃2n =
F2[x]/(x2·3`

+ x3`
+ 1).

One useful property of F̃2n is that the order of x ∈ F̃2n is small, specifically it is
3`+1 = O(n). (A priori, it could have been as large as 2n − 1.)

Fact 5.3.1. The order of x ∈ F̃2n is 3`+1.

Proof. First we show that x3l+1 ≡ 1 (mod x2·3l
+ x3l

+ 1). This holds because

x3l+1

= x2·3l · x3l ≡
(
x3l

+ 1
)
· x3l

=
(
x2·3l

+ x3l
)
≡ 1 (mod x2·3l

+ x3l

+ 1).

Thus the order of x has to divide 3l+1. Noting that x3l 6≡ 1 (mod x2·3l
+ x3l

+ 1), the
result follows.

One way in which Fact 5.3.1 is useful is that it allows us to easily reduce a given
polynomial modulo x2·3`

+ x3`
+ 1.

Lemma 5.3.2. Let n = 2 · 3`. Then there exist uniform AC0[⊕] circuits of size
poly(n, d) that, on input g(x) ∈ F2[x] of degree at most d, compute g(x) (mod x2·3`

+
x3`

+ 1).
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We will ultimately prove a much more general statement (Lemma 5.4.1), namely
that one can reduce g(x) ∈ F2[x] modulo any given polynomial (and not only x2·3`

+
x3`

+1). However, the proof of this more general result is also much more complicated,
and so we now give an easier proof for the special case of reducing modulo x2·3`

+x3`
+1.

Proof of Lemma 5.3.2. First we show that, given k ≤ d, we can compute xd ∈ F̃2n

by uniform AC0[⊕] circuits of size poly(n, d). The circuit will first use the fact that
division of integers of O(log n + log d) bits is computable by uniform AC0 circuits of
size poly(n, d) (see Lemma 2.4.1) to reduce k modulo 3`+1 and obtain 0 ≤ k′ < 3`+1

such that k′ ≡ k (mod 3`+1). By Fact 5.3.1, xk′ ≡ xk (mod x2·3`
+ x3`

+ 1). Clearly,
if k′ < 2 · 3`, then the result is simply xk′ . On the other hand, if 2 · 3` ≤ k′ < 3 · 3`,
then xk′ ≡ xk′−3`

+ xk′−2·3`
.

It follows that any given polynomial g(x) ∈ F2[x] of degree d can be reduced
modulo x2·3`

+x3`
+1 by uniform AC0[⊕] circuits of size poly(n, d); indeed, the circuit

needs only reduce each term xi of g(x) modulo x2·3`
+ x3`

+ 1, and then compute the
sum of all the terms (using parities of d bits).

A crucial way in which Fact 5.3.1 is useful is that it allows us to compute high
powers, αk, of field elements α ∈ F̃2n , in the special case when k is a power of 2.

Lemma 5.3.3. Let n be of the form n = 2 · 3`. Then there exist uniform AC0[⊕]
circuits of size poly(n, i) that, on input α ∈ F̃2n, computes α2i ∈ F̃2n.

Proof. Since α2n
= α for all α ∈ F̃2n , we first reduce i modulo n. This can be

accomplished by uniform AC0 circuits of size poly(n, i) by Lemma 2.4.1. From this
point on we assume that i ≤ n.

Let α(x) ∈ F2[x] be the polynomial representing α. Thus, it suffices to compute
α(x)2i ≡ α(x2i

) modulo x2·3`
+ x3`

+ 1. In particular, it suffices to compute xh·2i
in

F̃2n for every h, i ≤ n, since then we can then compute α(x2i
) by simply summing the

appropriate terms.
We show that each xh·2i ∈ F̃2n can actually be computed in uniform AC0: Recall

that the order of x modulo f(x) = x2·3`
+ x3`

+ 1 is 3`+1 by Fact 5.3.1. Therefore it
suffices to be able to reduce h · 2i modulo 3`+1, and then we can apply Lemma 5.3.2.
The only hard part of this is reducing 2i modulo 3`+1, since we can then multiply the
result by h and divide by 3`+1 using Lemma 2.4.1.

We now show how to reduce 2i modulo 3`+1. By the binomial theorem,

2i ≡ (3− 1)i ≡
i∑

j=0

(
i

j

)
3j(−1)i−j mod 3`+1.

Noting that all the terms of this sum vanish for j ≥ `+1 (thanks to the 3j factor),
we have

∑̀
j=0

(
i

j

)
3j(−1)i−j mod 3`+1 ≡

∑̀
j=0

i(i− 1) · · · (i− j + 1)

j(j − 1) · · · 1 · 3j(−1)i−j mod 3`+1.
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Since ` = O(log n) and |i| = O(log n), we can compute, for every j, i(i−1)···(i−j+1)
j(j−1)···1

by using an iterated product (of O(log n) integers of O(log n) bits) for the numera-
tor and denominator, and then performing a division of the results (i.e., of integers
having polylog(n) bits); both of these can be done by uniform AC0 circuits of size
poly(n) by Lemma 2.4.1. Additionally, the 3j term can be computed (using iterated
multiplication, say), and the (−1)(i−j) is easy to compute.

Finally, since ` = O(log n), the sum can be computed by uniform AC0 circuits
of size poly(n) using an iterated sum of integers having polylog(n) bits. Clearly, the
result only has polylog(n) bits, and so we may reduce modulo 3`+1 one last time to
find 2i (mod 3`+1).

We note that the above lemma is somewhat easier to prove if one is willing to
settle for either TC0 circuits (as opposed to AC0[⊕]) or size poly(n, 2iε) (as opposed
to poly(n, i)), which is all that is needed below. Nonetheless, we prefer to state and
prove this single more general result.

We now prove our main theorems about field operations in F̃2n .

Theorem 5.2.3 (restated). Let n = 2 · 3l. There exist uniform TC0 circuits of size
poly(n, t) that perform the following:

1. [HAB02] Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

Proof of Theorem 5.2.3. (1) Each field element αi is represented by a polynomial
αi(x) ∈ F2[x]. For the moment, we will actually consider the polynomials αi(x) as
polynomials α′i(x) over the integers, i.e. as polynomials with coefficients in {0, 1} ⊂
Z. It is proved in [HAB02] that the product of t polynomials of degree n over Z
can be computed by uniform TC0 circuits of size poly(n, t). Thus, the product

A′(x)
def
= α′1(x) · · ·α′t(x) can be computed by uniform TC0 circuits of size poly(n, t).

Clearly, A(x)
def
= α1(x) · · ·αt(x) ≡ A′(x) (mod 2), and so it remains to reduce A(x)

modulo x2·3`
+ x3`

+ 1; however, this follows from Lemma 5.3.2 (or by results in
[HAB02]).

(2) We reduce the computation of αk to the computation of a product α1 ·α2 · · ·αt

and apply Part (1). The integer k =
∑t−1

i=0 ki2
i is given in binary, as kt−1 · · · k1k0,

ki ∈ {0, 1}, and thus

αk = α
∑

i ki2
i

=
(
α20

)k0 ·
(
α21

)k1 · · ·
(
α2t−1

)kt−1

.

Hence, to apply part(1), it suffices to show that each term
(
α2i

)ki

can be computed

by TC0 circuits of size poly(n, t). Computing α2i
follows from Lemma 5.3.3 and,

since ki ∈ {0, 1}, the exponentiation by ki is easy.
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Theorem 5.2.4 (restated). Let n = 2 ·3l. Then, for every constant ε > 0, there exist
uniform AC0[⊕] circuits of size poly(n, 2tε) that perform the following:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

Proof of Theorem 5.2.4. (1) The idea is to reduce the problem to computing iterated
multiplication over an exponentially smaller field F′ via the Discrete Fourier Trans-
form. We can compute iterated multiplication over F′ in uniform AC0 by scaling
down the TC0 result (Theorem 5.2.3, Item 1). Details follow.

Consider an iterated multiplication instance (α1, . . . , αt). Recalling that F̃2n =
F2[x]/(f(x)) (where f(x) = x2·3l

+ x3l
+ 1 is the irreducible polynomial) we may

view each αi as a polynomial αi(x) of degree at most n − 1 in F2[x]. To compute

α1 · α2 · · ·αt ∈ F̃2n it will then suffice to compute the polynomial product A(x)
def
=

α1(x)α2(x) · · ·αt(x) ∈ F2[x], and then apply Lemma 5.3.2 to reduce this polynomial
modulo f(x).

Let m ∈ {log n + log t, . . . , 3(log n + log t)} be of the form m = 2 · 3l′ for some
l′ (such an m can be found by uniform AC0 circuits of size poly(2m) = poly(n, t)),
and consider the field F̃2m . To compute the polynomial product A(x) we will first
evaluate each polynomial αi(x) at every element γi, 1 ≤ i < 2m, of F̃×2m . Next, we will
compute A(γ1), . . . , A(γ2m−1) by using iterated product over the field F̃2m to compute
A(γi) = α1(γi) · · ·αt(γi). Then, since A(x) has degree at most (n−1)·t < 2log n+log t−1,
the values A(γ1), . . . , A(γ2m−1) uniquely determine A(x), and we will show how to
interpolate in uniform AC0[⊕] to recover A(x).

To accomplish these steps we will use the Discrete Fourier Transform matrix. That
is, let g ∈ F̃2m be a generator of F̃2m and note that such a generator can be found
in uniform AC0 by brute force (by computing exponentiation over F̃2m , which can
be done by scaling down the TC0 result, i.e. Theorem 5.2.3, Item 2. Alternatively,
one can use Theorem 3.2 in [AAI+01]). Now define the matrix D = (di,j)0≤i,j≤2m−2,

where di,j
def
= gi·j and note that D−1 = (d−1

i,j )0≤i,j≤2m−2. If we view αi as a (2m − 1)-

dimensional vector αi = (α
(0)
i , . . . , α

(2m−2)
i ) ∈ F2m−1

2 , where α
(j)
i is the coefficient of xj

in αi(x) (either 0 or 1), then Dαi = (αi(g
0), αi(g

1), . . . , αi(g
2m−2)). The matrix-vector

product Dαi can be computed by uniform AC0[⊕] circuits of size poly(2m) because
it only involves computing parities (of fan-in 2m − 1) and multiplications in the field
F̃2m , which we can do by uniform AC0 circuits of size poly(2m) by scaling down the
TC0 result, i.e. Theorem 5.2.3, Item (1).

Once the matrix-vector products Dα1, . . . , Dαt have been computed, the resulting
vectors can be multiplied component-wise (using the scaled-down version of Theorem
5.2.3, item 1) to obtain the vector Â = (A(g0), . . . , A(g2m−2)). Next, note that
A = D−1Â can also be computed in AC0[⊕], just as Dαi was computed above,
allowing us to recover the product polynomial A(x).
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Finally, by Lemma 5.3.2, A(x) can be reduced modulo the irreducible polynomial
f(x) to obtain the field element A = α1 · · ·αt.

(2) As in the uniform TC0 case we can reduce this problem to the product of t field
elements. Specifically, the reduction in Item 3 in Theorem 5.2.3 needs to compute
α2i

for i ≤ t. These can be computed in uniform AC0[⊕] by Lemma 5.3.3. For the
iterated product we use the previous item.

Theorem 5.2.5 (restated). For every constant d there is ε > 0 such that, for suf-
ficiently large t and n = 2 · 3l, the following cannot be computed by (nonuniform)
AC0[⊕] circuits of depth d and size 22εn · 2tε:

1. Given α1, α2, . . . , αt ∈ F̃2n, compute α1 · α2 · · ·αt ∈ F̃2n.

2. Given α ∈ F̃2n and a t-bit integer k, compute αk ∈ F̃2n.

Proof of Theorem 5.2.5. (1) We reduce MAJORITY on t bits to computing α1 ·
α2 · · ·αt for given α1, α2, . . . , αt ∈ F̃2n , where n ∈ {log(t + 1), . . . , 3 log(t + 1)} is
of the form n = 2 · 3l for some l. Since by a result of Razborov [Raz87] and Smolen-
sky [Smo87] we know that for every constant d there is a constant ε > 0 such that
MAJORITY on t bits cannot be computed by AC0[⊕] circuits of depth d and size
2tε , the result follows. We now describe the reduction. Let g ∈ F× be a generator.
Given a MAJORITY instance x = w1, w2, . . . , wt, consider the following instance of

iterated multiplication: α1, α2, . . . , αt, where αi
def
= g ∈ F if wi = 1, and αi

def
= 1 ∈ F if

wi = 0. It is easy to see that α1 · α2 · · ·αt = gj ∈ F where j =
∑

i wi. We can decide
majority simply by checking whether j ≥ t/2; this last step can be accomplished by
a simple look-up in a (nonuniform) table of size poly(n, t).

(2) We reduce MAJORITY on t bits to computing αk ∈ F̃2n for |k| = O(t log t)
and n = O(log t). Since by a result of Razborov [Raz87] and Smolensky [Smo87]
we know that for every constant d there is a constant ε > 0 such that MAJORITY
on t bits cannot be computed by AC0[⊕] circuits of depth d and size 2tε , the result

follows. Let l
def
= dlog3 log2(t + 1)e and m

def
= 3l. Set n

def
= 2 ·m and consider the field

F̃2n . Note that since |F̃×2n| = 2n − 1 = (2m − 1)(2m + 1), there is an element α ∈ F̃2n

of order (2m − 1).
The reduction works as follows. From the MAJORITY instance z = z0z1 . . . zt−1

construct an integer k with binary representation

k = zt−1 00 · · · 0︸ ︷︷ ︸
m−1 zeros

zt−2 00 · · · 0︸ ︷︷ ︸
m−1 zeros

zt−3 . . . z1 00 · · · 0︸ ︷︷ ︸
m−1 zeros

z0 =
t−1∑
i=0

zi(2
m)i.

Now observe that k =
∑

i zi(2
m)i ≡ ∑

i zi (mod 2m−1). Therefore αk = α
∑

i zi ; since
t < 2m − 1, this uniquely determines

∑
i zi, and so MAJORITY can now be decided

via look-up in a (nonuniform) table of size poly(n, t).
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5.4 Arithmetic in Other Realizations of F2n

In this section we prove Theorem 5.2.7. An important difference between this
setting and the case of field operations in F̃2n is that we must now be able to reduce
a polynomial g(x) ∈ F2[x] modulo an arbitrary given polynomial f(x) ∈ F2[x], and
not only modulo x2·3`

+ x3`
+ 1. The next lemma states that polynomial division in

F2[x] can be computed in uniform AC0[⊕].

Lemma 5.4.1. There exist uniform AC0[⊕] circuits of size poly(n, d) that, on input
polynomials f(x), g(x) ∈ F2[x] where deg(f) = n and deg(g) ≤ d, computes the unique
polynomials q(x), r(x) ∈ F2[x], such that g(x) = q(x)f(x) + r(x), where deg(q) =
deg(g)− n and deg(r) < n.

The approach for proving Lemma 5.4.1 is to implement, in constant-depth, the
Kung-Sieveking [Kun74, Sie72] algorithm, which reduces the problem of polynomial
division to the problem of computing small powers of polynomials. A similar approach
has been employed by Reif [Rei86] and Eberly [Ebe89] in constructing log-depth
circuits for polynomial division. The essential difference here is the observation that
log-depth is only required to compute sums of poly(n) polynomials and, in our setting,
we may instead use parity gates to accomplish such large summations in constant
depth.

Before proving Lemma 5.4.1, we show how to compute small powers of polynomials
in AC0[⊕], as this is an essential component of the proof.

Lemma 5.4.2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that, on input
s(x) ∈ F2[x] of degree n and a t-bit integer k, compute the polynomial s(x)k.

Proof. As in the proof of Theorem 5.2.4, part 1, we also use the Discrete Fourier
Transform to compute s(x)k.

In particular, let m ∈ {log n + t, . . . , 3(log n + t)} be of the form m = 2 · 3l′

for some l′ (such an m can be found by uniform AC0 circuits of size poly(2m) =
poly(n, 2t)), and consider the field F̃2m . To compute the polynomial power s(x)k, we
first evaluate the polynomial s(x) at every element γi, 1 ≤ i < 2m, of F̃×2m , just as
in the proof of Theorem 5.2.4, part 1. Next, we compute s(γ1)

k, . . . , s(γ2m−1)
k by

using exponentiation in the field F̃2m (which follows from part 2 of Corollary 5.2.6;
alternatively, one can use Theorem 3.2 from [AAI+01].) Then, by the choice of m, the
values s(γ1)

k, . . . , s(γ2m−1)
k uniquely determine s(x)k, and thus we can interpolate in

uniform AC0[⊕] to recover A(x), using the inverse Fourier Transform just as in the
proof of Theorem 5.2.4, part 1.

Proof of Lemma 5.4.1. Denote the degree of g(x) by m ≤ d, and throughout we write
f(x) = xn + an−1x

n−1 + · · ·+ a0 and g(x) = xm + bm−1x
n−1 + · · ·+ b0 for ai, bi ∈ F2.

The algorithm will proceed as follows:

(1) Construct fR(x)
def
= a0x

n + · · ·+ an−1x + 1 by reversing the coefficients of f(x).
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(2) Construct gR(x)
def
= b0x

m + · · ·+ bm−1x + 1 by reversing the coefficients of g(x).

(3) Let f̃R(x)
def
= 1 + (1− fR(x)) + (1− fR(x))2 + · · ·+ (1− fR(x))m−n. (Note that

f̃R(x) is simply a truncation of the power series fR(x)−1 = 1 + (1 − fR(x)) +
(1− fR(x))2 + · · · .)

(4) Compute h(x)
def
= f̃R(x)gR(x) = c0 + c1x + c2x

2 + · · · , and then the coefficients
of q(x) = qm−nx

m−n + · · · + q1x + q0 can be read off as qi = cm−n−i, i.e. the
reverse of the lowest m− n + 1 coefficients of h(x).

(5) Once q(x) has been computed, r(x) can be found by computing r(x) = g(x)−
q(x)f(x).

Before proving the correctness of the algorithm, let us see why it can be performed
by uniform AC0[⊕] circuits: Steps (1) and (2) are trivial. The computation of (1 −
fR(x))k for 0 ≤ k ≤ m − n follows from Lemma 5.4.2, and it is clear that the
summation in step (3) only requires (unbounded fan-in) parity gates. Step (4) is
trivial. Step (5) only requires polynomial multiplication which is easily seen to be in
uniform AC0[⊕].

Now we establish the correctness of the algorithm. Note that fR(x) = xnf(1/x),
gR(x) = xmg(1/x) and define qR(x) = xm−nq(1/x) and rR(x) = xn−1r(1/x). Thus we
have

g(x) = q(x)f(x) + r(x)

g(1/x) = q(1/x)f(1/x) + r(1/x)

gR(x) = qR(x)fR(x) + xm−n+1rR(x)

Hence h(x)
def
= f̃R(x)gR(x) = qR(x)(f̃R(x)fR(x)) + xm−n+1f̃R(x)rR(x). Note, however,

that
f̃R(x)fR(x) = f̃R(x)(1− (1− fR(x))) = 1 + (1− fR(x))m−n+1,

and since the constant term of fR(x) is 0 (by the assumption that f has degree exactly
n), we have that

f̃R(x)fR(x) = 1 + xm−n+1t(x)

for some t(x) ∈ F2[x]. In particular,

h(x)
def
= f̃R(x)gR(x) = qR(x)(1 + xm−n+1t(x)) + xm−n+1f̃R(x)rR(x),

and it is clear that the lowest m− n coefficients of h(x) are the coefficients of qR(x)
as claimed.

Now we are prepared to prove Theorem 5.2.7. We restate the theorem for the
reader’s convenience.

Theorem 5.2.7 (restated).
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1. For every constant ε > 0, there exist uniform AC0[⊕] circuits of size poly(n, 2tε)
that perform the following: Given f(x) ∈ F2[x] of degree n and α1, α2, . . . , αt ∈
F2[x]/(f(x)), compute α1 · α2 · · ·αt ∈ F2[x]/(f(x)).

2. There exist uniform AC0[⊕] circuits of size poly(n, 2t) that perform the follow-
ing: Given f(x) ∈ F2[x] of degree n, α ∈ F2[x]/(f(x)) and a t-bit integer k,
compute αk ∈ F2[x]/(f(x)).

Proof of Theorem 5.2.7. (1) It suffices to replace the use of Lemma 5.3.2 in the proof
of part 1 of Theorem 5.2.4 with Lemma 5.4.1.

(2) Consider α ∈ F2[x]/(f(x)) as a polynomial α(x) ∈ F2[x] of degree at most
n − 1. We may apply Lemma 5.4.2 to compute α(x)k (which has degree at most
k ·(n−1) ≤ poly(n, 2t)) by AC0[⊕] circuits of size poly(n, 2t), and then apply Lemma
5.4.1, to reduce it modulo f(x), again by AC0[⊕] circuits of size poly(n, 2t).

Theorem 5.2.8 (restated). The problem of determining whether a given polynomial
f(x) ∈ F2[x] of degree n is irreducible, is poly(n)-size AC0[⊕]-reducible to the follow-
ing problem: Given an irreducible polynomial f(x) ∈ F2[x] of degree n, compute the
conjugates x, x2, x22

, . . . , x2n−1
(mod f(x)).

Proof. The reduction proceeds as follows on input f(x) ∈ F2[x] of degree n:

(i) Use the oracle to try to compute x, x2, x22
, . . . , x2n−1

(mod f(x)). Call the re-
sulting quantities a0, a1, . . . , an−1.

(ii) Check that a0 = x, that ai+1 ≡ a2
i (mod f(x)) for all 0 ≤ i ≤ n − 1 and that

a2
n−1 ≡ x (mod f(x)). Otherwise, return REDUCIBLE.

(iii) If ∏

primes p|n

(
x2n/p − x

)
≡ 0 (mod f(x))

then return REDUCIBLE, otherwise return IRREDUCIBLE.

First we argue the correctness of the reduction. Since the analysis is similar to
the approach from [Rab80] and [MS83], we will only give a sketch of the proof.

The proof will use the following basic facts from the theory of finite fields: (1)
The roots of x2n − x are precisely the elements of the field F2n , each occurring with
multiplicity 1. (2) x2n − x is divisible by an irreducible polynomial g(x) of degree m
if and only if m divides n.

If f(x) is irreducible, then the oracle call in step (i) will succeed, returning ai ≡ x2i

(mod f(x)); step (ii) will succeed because of the assignment of the ai’s and because
a2

n−1 ≡ (x2n−1
)2 = x2n ≡ x (mod f(x)) for any irreducible f(x) (since x2n−x is divis-

ible by every irreducible polynomial of degree n); finally, step (iii) succeeds because
an irreducible f(x) of degree n cannot divide x2m − x for any m < n.
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On the other hand, if f(x) is reducible and steps (i) and (ii) succeed, then we know
that ai ≡ x2i

(mod f(x)), and moreover that x2n ≡ x (mod f(x)). This guarantees
that f(x) divides x2n − x and therefore that f(x) is square-free and has all its roots
in F2n . Let f(x) = h1(x) · · ·h`(x) be the factorization of f into distinct irreducibles
hi(x). To show that step (iii) succeeds, it suffices, by the Chinese Remainder Theorem,

to show that the product
∏

p|n(x2n/p−x) is divisible by each hi(x). Fix an irreducible

factor h(x) of f(x). The degree of h(x) must divide n (since f(x) divides x2n − x),
and hence must divide some maximal proper divisor n/p of n. Therefore, h(x) will

divide (x2n/p − x) for some prime p | n, and the product in part (iii) will be divisible
by h(x). This concludes the proof of correctness.

Next we argue that the reduction is computable by AC0[⊕] circuits of size poly(n):
Step (i) is simply an oracle query. Each check in step (ii) can be accomplished in
parallel using modular multiplication (which follows from the iterated product in
Theorem 5.2.7 part 1, together with Lemma 5.4.1). Each term in the product from

step (iii) can be computed using the oracle responses to compute x2n/p
; since there

are at most O(log n) primes dividing n, step (iii) is an iterated product of O(log n)
polynomials which can be computed by AC0[⊕] circuits of size poly(n) by Theorem
5.2.7, provided that the list of primes p dividing n is known. This list of primes can
either be hard-wired into the circuit (for a non-uniform reduction) or can be shown
to be computable in uniform AC0[⊕] by a more complicated proof, which we omit.
Finally, the answer can be reduced modulo f(x) using Lemma 5.4.1.

5.5 Proof of AE = Dlogtime uniform TC0

In this section we prove that AE = Dlogtime uniform TC0. First we exhibit
a dual basis for F̃2n . Recall that the trace function tr : F2n → F2 is defined by

tr(α)
def
=

∑n−1
i=0 α2i

. Also recall that two bases (α0, α1, . . . , αn−1) and (β0, β1, . . . , βn−1)
are dual if for every i, j we have that tr(αi · βj) = 1 when i = j, while tr(αi · βj) = 0
when i 6= j.

Lemma 5.5.1. Let n be of the form n = 2·3l. Let (α0, α1, . . . , αn−1) = (1, x, . . . , xn−1)
be the standard basis for F̃2n. Then (β0, β1, . . . , βn−1) = (x3l

, x3l−1, . . . , x3l−(n−1)) is
the dual basis of (α0, α1, . . . , αn−1).

The proof of this lemma follows immediately from the next lemma.

Lemma 5.5.2. Let x ∈ F̃2n be a root of x2·3`
+ x3`

+ 1. Then, for any 0 ≤ i < 3`+1,
we have tr(xi) = 1 if i = 3` or i = 2 · 3`, and tr(xi) = 0 otherwise.

Proof. Recall that tr(xi) =
∑2·3`−1

k=0 xi·2k
. Thus, if i = 0, then tr(xi) = tr(1) =∑2·3`−1

k=0 12k
= (2 · 3`) · 1 ≡ 0 mod 2.



Chapter 5: Constant-Depth Circuits for Finite Field Arithmetic 92

Now suppose that 0 < i < 3`+1, and let 3m be the largest power of 3 dividing i.
We will show that tr(xi) = 1 if m = ` and tr(xi) = 0 otherwise.

Since 2 is a generator of Z×3t for any integer t > 0 (e.g., [van99] Lemma 1.1.27),
and since x has order 3`+1 by Fact 5.3.1, we know that the exponent, i · 2k, of x will
take on every value in the multiset 3mZ×

3`+1 (with multiplicities) as k ranges from 0
to ϕ(3`+1)− 1 = 2 · 3` − 1. Therefore, we have

tr(xi) ≡
3`+1−1∑

r=0
(r,3)=1

x3m·r =
3`+1−1∑

r=0

x3m·r−
3`−1∑
r=0

x3m+1·r =
1− (x3m

)3`+1

1− x3m −
3`−1∑
r=0

x3m+1·r ≡
3`−1∑
r=0

x3m+1·r,

where we use that the denominator is non-zero because m < ` + 1 and x has order
3`+1.

If m = `, then every term of the sum is 1, and so this is 3` ≡ 1 mod 2. On the
other hand, if m < `, then

3`−1∑
r=0

x3m+1·r =
1− (x3m+1

)3`+1

1− x3m+1 = 0.

Theorem 5.2.10 (restated). AE = Dlogtime−uniform TC0 in the following sense:
Let f : {0, 1}n → {0, 1}n be in Dlogtime-uniform TC0. Then there is f ′ : F̃2n →

F̃2n in AE such that for every n of the form 2 · 3l, and for every x of length n,
f(x) = f ′(x).

Conversely, let f : F̃2n → F̃2n be in AE. Then there is f ′ : {0, 1}n → {0, 1}n in
Dlogtime-uniform TC0 such that for every n of the form 2 · 3l, and for every x of
length n, f(x) = f ′(x).

Proof of Theorem 5.2.10. We use the following result from [FVB94]: AE is equivalent
to the class of functions computed by Dlogtime-uniform arithmetic circuits of poly-
nomial size and constant-depth. Where an arithmetic circuit is a circuit with gates
for the constant field element x, unbounded fan-in sum, unbounded fan-in product,
and single input conjugation (this gate computes α → α2j

for 0 ≤ j ≤ n). We refer
the reader to Definition 2.1 in [FVB94] for more on arithmetic circuits. (While their
equivalence is proved for a slightly different notion of AE and arithmetic circuit, it
can be verified that it also applies to ours.)

AE ⊆ Dlogtime−uniform TC0: By the equivalence above, it is enough to show
that any function computed by a Dlogtime−uniform arithmetic circuits of polynomial
size and constant-depth is computable in Dlogtime−uniform TC0. This follows by
replacing the gates of the uniform circuits with the corresponding circuits as given
by Theorem 5.2.3 (the iterated sum is not stated in the theorem but can be easily
computed with XOR gates).
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Dlogtime−uniform TC0 ⊆ AE: To understand the proof of this inclusion, we
first need to discuss an issue about interpretations of bit strings as field elements.
Throughout the work, and in particular in the statement of the theorem we are
proving, we have interpreted a n-bit string as a field element in a field of size 2n.
Let us call this interpretation (1). Another possible interpretation, which we denote
(2), is to interpret a n-bit string as a tuple of n field elements, the i-th field element
being 0 or 1 according to the i-th bit in the string. Lemma 2.2 in [FVB94] proves
the inclusion Dlogtime−uniform TC0 ⊆ AE under interpretation (2) (to make sense
of this one extends in the natural way the definition of AE to include functions
mapping tuples of field elements to tuples of field elements). To prove the inclusion
under interpretation (1), and thus concluding the proof of the theorem, we show how
to convert back and forth between interpretations (1) and (2) in AE. Converting
from (2) to (1) is relatively simple, and we omit the details that can be found in
[FVB94]. To convert from (1) to (2), following [BFS92, FVB94], we use a dual basis
for F̃2n . Specifically, let (α0, α1, . . . , αn−1) = (1, x, . . . , xn−1) be the standard basis for
F̃2n . In other words we view an input (c0, c1, . . . , cn−1) ∈ {0, 1}n as the field element
γ =

∑
i ciαi ∈ F̃2n . Now let (β0, β1, . . . , βn−1) = (x3l

, x3l−1, . . . , x3l−(n−1)) be the dual
basis of (α0, α1, . . . , αn−1) as given by Lemma 5.5.1. It follows from the definition of
dual basis that ci = tr(βi · γ). Therefore to convert from interpretation (1) to (2)
is enough to note that tr(βi · γ) can be computed by a Dlogtime-uniform arithmetic
circuit, and thus is in AE by the result from [FVB94] mentioned at the beginning of
this proof.

5.6 Proof of k-wise and ε-biased generator con-

structions

Theorem 5.2.13 (restated).

1. For every k and m there is a k-wise independent generator G : {0, 1}s →
{0, 1}m, with s = O(k log m) that is bitwise computable by uniform AC0[⊕]
circuits of size poly(s, log m) = poly(s).

2. For every ε and m, there is an ε-biased generator G : {0, 1}s → {0, 1}m with
s = O(log m + log(1/ε)) that is bitwise computable by uniform TC0 circuits of
size poly(s, log m) = poly(s).

Proof of Theorem 5.2.13. (1) We use the following construction from [CG89, ABI86].
Let h = O(log m) be the smallest integer bigger than log(m) of the form h = 2 · 3l

for some l. The generator G : {0, 1}s → {0, 1}m is defined as

G(α0, α1, . . . , αk−1)i
def
=

∑

j<k

αj · ij, where α0, α1, . . . , αk−1, i ∈ F̃2h ,
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is a k-wise independent generator. This generator is computable by uniform AC0[⊕]
circuits of size poly(s, log m) by Theorem 5.2.4.

(2) We use the following construction from [AGHP92]. Let h = O(log m+log(2/ε))
be the smallest integer bigger than log(m) + log(2/ε) of the form h = 2 · 3l for some
l. The generator G : {0, 1}s → {0, 1}m defined as

G(α, β)i
def
= 〈αi, β〉 where α, β ∈ F̃2h ,

is an ε-biased generator. (Where 〈·, ·〉 denotes inner product mod 2.) This generator
is computable by uniform TC0 circuits of size poly(s, log m) by Item 2 in Theorem
5.2.3.

5.7 Open Problems

Given α ∈ F̃2n , can α−1 be computed by uniform AC0[⊕] circuits of size poly(n)?
Given an irreducible polynomial f(x) of degree n and α ∈ F2[x]/(f(x)), is it possi-

ble to compute α2i
for any i = ω(log n) by uniform TC0 circuits of size poly(n)? (cf.

Lemma 5.3.3)? This is what limits our results about exponentiation in F2[x]/(f(x)).
Both of the above problems are also open for nonuniform circuits.
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constructions of almost k-wise independent random variables. Random
Structures & Algorithms, 3(3):289–304, 1992.

[Ajt93] Miklós Ajtai. Approximate counting with uniform constant-depth cir-
cuits. In Advances in computational complexity theory, pages 1–20.
Amererican Mathematical Society, 1993.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network.
Combinatorica, 3:1–19, 1983.

[AKS87] M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in
LOGSPACE. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, pages 132–140, May 25–27 1987.

[And02] Ian Anderson. Combinatorics of finite sets. Dover Publications Inc.,
Mineola, NY, 2002. Corrected reprint of the 1989 edition.

95



Bibliography 96

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders.
Random Structures & Algorithms, 5:271–284, 1994.

[AS00] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wi-
ley and Sons, Inc., 2000.

[BF90] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle
queries. In Proceedings of the 7th Annual Symposium on Theoretical
Aspects of Computer Science, volume 415 of Lecture Notes in Computer
Science, pages 37–48. Springer, February 22–24 1990.
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[L9́8] P. Lézaud. Chernoff-type bound for finite Markov chains. Annals of
Applied Probability, 8(3):849–867, 1998.

[Lev86] Leonid A. Levin. Average case complete problems. SIAM Journal on
Computing, 15(1):285–286, February 1986.

[Lip89] Richard Lipton. New directions in testing. In Proceedings of DIMACS
Workshop on Distributed Computing and Cryptography, 1989.

[LP04] Carlos A. León and François Perron. Optimal Hoeffding bounds for dis-
crete reversible Markov chains. Annals of Applied Probability, 14(2):958–
970, 2004.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
troica, 8(3):261–277, 1988.



Bibliography 101

[LTW05] Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of
hardness amplification. In Proceedings of the 20th Annual IEEE Confer-
ence on Computational Complexity, June 12–15 2005.

[Mar73] G. A. Margulis. Explicit constructions of expanders. Problemy Peredachi
Informatssi; English translation, Problems of Information Transmission,
9(4):71–80, 1973.

[Mih89] M. Mihail. Conductance and convergence of Markov chains: a combina-
torial treatment of expanders. In Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science, pages 526–531, Octo-
ber 30 – November 1 1989.

[MNT90] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational
complexity of universal hashing. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, pages 235–243, May 14–16 1990.

[MO03] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of mono-
tone functions. Random Structures & Algorithms, 23(3), 2003.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[MS83] Moshe Morgensteren and Eli Shamir. Parallel algorithms for arithmetics,
irreducibility and factoring of GFq-polynomials. Stanford University
Technical Report STAN-CS-83-991, December 1983.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combina-
torica, 11(1):63–70, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12, 1992.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: efficient construc-
tions and applications. In Proceedings of the 22nd Annual ACM Sympo-
sium on Theory of Computing, pages 213–223, May 14–16 1990.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of
Computer and System Sciences, 49(2):149–167, October 1994.

[O’D04] Ryan O’Donnell. Hardness amplification within NP . Journal of Com-
puter and System Sciences, 69(1):68–94, August 2004.

[Rab80] Michael O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal
on Computing, 9(2):273–280, 1980.



Bibliography 102

[Raz87] Alexander A. Razborov. Lower bounds on the dimension of schemes
of bounded depth in a complete basis containing the logical addition
function. Akademiya Nauk SSSR. Matematicheskie Zametki, 41(4):598–
607, 623, 1987.

[Rei86] J. Reif. Logarithmic depth circuits for algebraic functions. SIAM Journal
on Computing, 15(1):231–242, 1986.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages
376–385, May 21–24 2005.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the
zig-zag graph product and new constant-degree expanders. Annals of
Mathematics, 155(1):157–187, January 2002.

[Sak96] Michael Saks. Randomization and derandomization in space-bounded
computation. In Proceedings of the 11th Annual IEEE Conference on
Computational Complexity, pages 128–149, May 24–27 1996.

[SF93] Carl Sturtivant and Gudmund Skovbjerg Frandsen. The computa-
tional efficacy of finite-field arithmetic. Theoretical Computer Science,
112(2):291–309, 1993.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the European Association for Theoretical Computer Science,
(77):67–95, 2002. Columns: Computational Complexity.

[Sie72] M. Sieveking. An algorithm for division of power series. Computing,
10:153–156, 1972.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds
for boolean circuit complexity. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, pages 77–82, May 25–27 1987.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the XOR lemma. Journal of Computer and System Sciences,
62(2):236–266, 2001. Special issue on the Fourteenth Annual IEEE Con-
ference on Computational Complexity (Atlanta, GA, 1999).

[SU00] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science, October
14–17 2000.



Bibliography 103

[Tre03] Luca Trevisan. List decoding using the XOR lemma. In Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science,
October 11–14 2003.

[TV02] Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case
complexity via uniform reductions. In Proceedings of the 17th Annual
IEEE Conference on Computational Complexity, pages 129–138, May
2002.

[Uma02] Christopher Umans. Pseudo-random generators for all hardnesses. In
Proceedings of the 34th Annual ACM Symposium on Theory of Comput-
ing, May 19–21 2002.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity.
In Mathematical foundations of computer science (Tatranská Lomnica,
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