
Randomness-Efficient Sampling within NC1

Alexander Healy∗

March 27, 2007

Abstract

We construct a randomness-efficient averaging sampler that is computable by uniform constant-
depth circuits with parity gates (i.e., in uniform AC0[⊕]). Our sampler matches the parameters
achieved by random walks on constant-degree expander graphs, allowing us to apply a variety
expander-based techniques within NC1. For example, we obtain the following results:

• Randomness-efficient error-reduction for uniform probabilistic NC1,TC0,AC0[⊕] and AC0:
Any function computable by uniform probabilistic circuits with error 1/3 using r random bits
is computable by circuits of the same type with error δ using r + O(log(1/δ)) random bits.

• An optimal bitwise ε-biased generator in AC0[⊕]: There exists a 1/2Ω(n)-biased generator
G : {0, 1}O(n) → {0, 1}2n

for which poly(n)-size uniform AC0[⊕] circuits can compute G(s)i

given (s, i) ∈ {0, 1}O(n) × {0, 1}n. This resolves a question raised by Gutfreund and Viola
(Random 2004).

• uniform BP ·AC0 ⊆ uniform AC0/O(n).

Our sampler is based on the zig-zag graph product of Reingold, Vadhan and Wigderson (Annals of
Math 2002) and as part of our analysis we give an elementary proof of a generalization of Gillman’s
Chernoff Bound for Expander Walks (FOCS 1994).

1 Introduction

Over the last three decades, expander graphs have found a wide variety of applications in Theoretical
Computer Science. They have been used in designing novel algorithms (e.g., [AKS83], [Rei05]), in the
study of circuit complexity (e.g., [Val77], [IW97]) and to derandomize probabilistic computation (e.g.,
[CW89], [IZ89]), just to name a few notable examples from this vast literature.

Many of these applications involve a random walk on an expander. That is, we choose a random
starting node v in an expander graph G, take a k-step random walk and use the k nodes visited by
this walk in some way – often as a substitute for k independently-chosen nodes. Despite its simplicity,
this processes has some remarkable sampling properties which we discuss shortly. For the moment, we
address the computational efficiency of expanders walks.

∗Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, ahealy@fas.harvard.edu.

Research supported by NSF grant CCR-0205423 and a Sandia Fellowship.

1

1.1 The Complexity of Walks on Expander Graphs

In applications, one often requires an expander graph that is exponentially large, say on 2n nodes. In
this case, a random walk on the graph is performed using a strongly explicit representation – that is, a
representation in which each node is identified with an n-bit string and it is possible to efficiently (e.g.,
in time poly(n)) find all the neighbors of a given node v ∈ G. Several beautiful constructions [Mar73,
GG81, LPS88, RVW02] are known of such explicit constant-degree expander graphs of exponential size.

At first glance, the act of taking a random walk on an expander graph seems like an inherently sequential
process – indeed, each step of the walk seems to rely on the previous step in an essential way. A
natural question, therefore, is whether the wealth of expander-based techniques from the literature can
be applied within highly-parallel models of computation, such as log-depth circuits (i.e., NC1) or even
constant-depth circuits.

The main technical contribution of this work is a sampler that is just as good as a random walk on
an expander graph (in a sense that is made precise in the next section), but which is computable in
parallel time O(log n), i.e. computable by uniform NC1 circuits. In fact, our sampler is computable
by uniform constant-depth circuits with parity gates (i.e. AC0[⊕]), a class that is strictly weaker than
NC1 as it cannot even compute the majority of n bits [Raz87].

1.2 The Properties of Walks on Expander Graphs

We now discuss the important sampling properties of random walks on expander graphs in order to
better understand what properties we require of our sampler. A more formal definition of expander
graphs is given in Section 2, but for the moment the reader may simply think of an expander graph as
a constant-degree undirected graph, G, that is “highly-connected”.

A fundamental sampling property of expander walks is the hitting property, first shown by Ajtai,
Komlós and Szemerédi [AKS87]:

The Hitting Property: For any subset S of half the nodes of G, the probability that a k-step random
walk never visits a node in S is at most 2−Ω(k).

This hitting property is quite useful (e.g., to reduce the error of RP algorithms), but some applications
require an even stronger property, which we call the strong hitting property:

The Strong Hitting Property: For any sequence of subsets S1, . . . , Sk, each consisting of half the
nodes of G, the probability that a k-step random walk does not pass through Si on the i-th step for
any i ∈ {1, . . . , k} is at most 2−Ω(k).

It turns out that this strong hitting property is what is necessary for the randomness-efficient er-
ror reduction techniques of [CW89] and [IZ89], the amplification technique of [GIL+90] and for the
derandomized XOR Lemma of [IW97].

Clearly, the strong hitting property is a generalization of the (non-strong) hitting property. Another
natural generalization of the hitting property is the following, first proved by Gillman [Gil94]:

2

The Chernoff Bound for Expander Walks: For any subset S of half the nodes of G, the fraction
of time that a k-step random walk spends in S is 1/2± ε with probability 1− 2−Ω(ε2k).

This Chernoff Bound is quite powerful and has applications to constructing randomness extractors (see
[Zuc97]) and to Markov-Chain Monte Carlo algorithms (see [Gil94]); although, it is not clear that it
subsumes the strong hitting property. The following property, however, generalizes both the strong
hitting property and the Chernoff bound:

The Strong Chernoff Bound for Expander Walks: Fix a sequence of subsets S1, . . . , Sk, each
consisting of half the nodes of G. Then for a k-step random walk on G, the fraction of indices i such
that the i-th step of the walk lands in Si is 1/2± ε with probability 1− 2−Ω(ε2k).

Thus, the Strong Chernoff Bound for Expander Walks subsumes all the aforementioned sampling
properties, and it seems to represent the essential abstract property of random walks on expanders
that is necessary for most natural applications. This bound has only been proved recently – it follows
from the work of Wigderson and Xiao [WX05]. (Although a subsequent manuscript of Wigderson
and Xiao [WX06] points out an error in [WX05], this only affects the case of sampling d-dimensional
matrices for d ≥ 2. Their proof remains valid for the case of sampling 1-dimensional matrices, which
is all that is needed for the Strong Chernoff Bound stated here.)

In this paper, we give a direct and elementary proof of the Strong Chernoff Bound for Expander Walks
(Theorem 1). In contrast to most of the proofs in this area, our proof uses only basic linear algebra
and, in particular, does not require any perturbation theory or complex analysis in order to obtain a
bound that matches the parameters of Gillman’s (non-strong) Chernoff bound.1 Since this bound is
important to our analysis, we give a formal statement before describing our results in more detail. (In
the following, a λ-expander is a regular graph whose normalized second-largest eigenvalue (in absolute
value) is at most λ – see Section 2 for a precise definition.)

Theorem 1 (Implicit, up to constants, in [WX05]). Let G be a regular λ-expander on V and fix a
sequence of functions fi : V → [0, 1] each with mean µi = Ev[fi(v)]. If we consider a random walk
v1, . . . , vk on G, then for all ε > 0,

Pr

[∣∣∣∣∣
k∑

i=1

fi(vi)−
k∑

i=1

µi

∣∣∣∣∣ ≥ εk

]
≤ 2e−

ε2(1−λ)k
4 .

In particular, by taking the functions fi to be the characteristic functions of the sets Si we obtain the
Strong Chernoff Bound for Expander Walks (informally) stated above.

We also give a multiplicative form of the Chernoff bound (Theorem 22) that is sharper than Theorem
1 when the sets we are sampling is small (i.e., when the µi are small in the notation of Theorem 1).
While Kahale [Kah97] has also improved Gillman’s Chernoff bound in this setting, his techniques only

1[WX05] also gives a proof of a (strong) Chernoff bound using no perturbation theory but this bound does not match

Gillman’s. In particular, Theorem A.1 of [WX05] has a cubic dependence on the spectral gap 1 − λ in the exponent, as

opposed to the (optimal) linear dependence; moreover, even when the spectral gap 1 − λ is constant, the dependence on

ε is (slightly) worse than quadratic.

3

address the case of sampling a single set; i.e., they give a non-strong Chernoff bound. As a corollary
to the proof of Theorem 1, we obtain a strong Chernoff bound that improves upon Theorem 1 when
the µi and λ are small (see Theorem 22 and Corollary 23).

1.3 Our Sampler

Our main result is the construction of a sampler that is computable by AC0[⊕] circuits and possesses
all the “sampling properties” of a random walk on a constant-degree expander graphs of size 2n. To
make this notion precise, we recall the following definition (essentially from [Zuc97]):

Definition 2. A function Γ : {0, 1}m → ({0, 1}n)k is said to be a strong (γ, ε)-averaging2 sampler if:
for any sequence of functions fi : {0, 1}n → [0, 1] each with mean µi = Ex[fi(x)],

Pr
s

[∣∣∣∣∣
k∑

i=1

fi(Γ(s)i)−
k∑

i=1

µi

∣∣∣∣∣ ≤ εk

]
≥ 1− γ.

We call m the seed-length of the sampler, and we call k the sample complexity of the sampler.

It is not hard to check that Theorem 1 implies that a random walk on a constant-degree expander
(where λ is a constant less than 1) of size 2n is a strong averaging sampler with seed-length m =
n + O(log(1/γ)/ε2) and sample complexity k = O(log(1/γ)/ε2). Moreover, this sample complexity is
known to be optimal up to constant factors, and when ε = Ω(1) the seed-length is also optimal up to
constant factors [CEG95]. Our main theorem is that uniform AC0[⊕] can compute a sampler that is
just as good:

Theorem 3. There exists a strong (γ, ε)-averaging sampler Γ : {0, 1}m → ({0, 1}n)k with seed-length
m = n + O(log(1/γ)/ε2) and sample complexity k = O(log(1/γ)/ε2) such that Γ is computable by
uniform AC0[⊕] circuits of size poly(n, 1/ε, log(1/γ)).

On the one hand, Theorem 3 is superior to a random walk of length k on a constant-degree expander of
size 2n in the very low computational complexity of Γ; indeed, we do not know of any constant-degree
expander walks computable in such low complexity. On the other hand, the sampler of Theorem 3 is
potentially a weaker object than an expander walk: there may exist applications of expander walks in
which one cannot simply substitute an arbitrary sampler. We note, however, that many applications of
expander walks rely only on the fact that an expander walk is a good sampler; thus, when computational
complexity is of the essence, we may employ our sampler in lieu of the expander walk.

As discussed in Section 3.1, the proof of Theorem 3 relies upon the zig-zag graph product of [RVW02]
to build a sampler in AC0[⊕]. In Section 3.3, we also mention an alternate construction of a sampler
in AC0[⊕] that is inspired by the paradigm of sampler composition [BGG93, Gol97].

Gutfreund and Viola have shown [GV04] that walks on the Margulis/Gabber-Galil expander graph
[Mar73, GG81] with 2n nodes are computable in space O(log n) (and therefore that logspace has strong

2[Zuc97] uses the term “oblivious sampler”. We follow [Gol97] and use the more-accurate “averaging sampler”.

4

samplers that match the parameters of Theorem 3). To the best of our knowledge, ours is the first
work that implies the existence of such strong samplers within the class NC1 of log-depth circuits; in
fact, our construction is in the strictly-weaker class AC0[⊕] (TC0 ⊆ NC1 ⊆ L.

Since expander walks are a powerful and widely-applicable tool it is not surprising that our sampler
construction should have a variety of applications. Indeed, we apply our construction to obtain the
new results described in the remainder of this section.

Randomness-Efficient Error Reduction within NC1 One important application of random
walks on expander graphs is in reducing the error of probabilistic algorithms. Such error reduction
was achieved for BPP by Cohen and Wigderson [CW89] and Impagliazzo and Zuckerman [IZ89]. Bar-
Yosef, Goldreich and Wigderson [BYGW99] show how to achieve modest-but-optimal error reduction
for probabilistic logspace (i.e., the class BPL); this is accomplished by a careful implementation of
short random walks the Margulis/Gabber-Galil expander that can be computed with one-way access to
the random bits describing the walk. In contrast, Gutfreund and Viola [GV04] show how to compute
long random walks on the Margulis/Gabber-Galil expander when given two-way access to the random
bits describing the walk – this implies randomness-efficient error reduction for the class BP ·L. (BP ·L
refers to probabilistic logspace computation that allows for two-way access to the random bits, whereas
the result of Bar-Yosef et al. concerns the standard model of probabilistic logspace computation, i.e.
BPL, which only allows one-way access to the random bits. See the survey of Saks [Sak96] for a
discussion of the subtleties surrounding different notions of probabilistic space-bounded computation.)
As an application of our sampler construction, we obtain analogous error-reduction for a variety of
classes below logspace (see Section 2 for the definitions of BP ·NC1, BP ·TC0 and BP ·AC0[⊕]):

Corollary 4. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP·AC0[⊕]
(respectively, BP ·TC0 or BP ·NC1) circuits with error at most 1/3 using r = r(n) random bits. Then
for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size uniform BP ·AC0[⊕] (respectively, BP ·TC0

or BP ·NC1) circuits with error at most δ using r + O(log(1/δ)) random bits.

Combining our sampler with Nisan’s unconditional pseudorandom generator for constant-depth circuits
[Nis91], we obtain an even stronger result for BP ·AC0 (see Section 2 for the definition of BP ·AC0):

Corollary 5. Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP ·AC0

circuits with error at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has
polynomial-size uniform BP ·AC0 circuits with error at most δ using min{r,polylog(n)}+O(log(1/δ))
random bits.

Derandomization with Linear Advice Recently, Fortnow and Klivans [FK06] have proved that
RL ⊆ L/O(n) – that is, one can derandomize probabilistic logspace computation at the cost of only a
linear amount of non-uniform advice. Their approach is based on a clever combination of Nisan’s
pseudorandom generator for space-bounded computation [Nis92] and the logspace expander walks
of Gutfreund and Viola [GV04]. Our techniques yield an analogous result for uniform probabilistic
constant-depth circuits:

5

Corollary 6. uniform BP ·AC0 ⊆ uniform AC0/O(n).

Ajtai and Ben-Or [ABO84] have shown that nonuniform BP ·AC0 = nonuniform AC0; however, even
for derandomizing uniform BP ·AC0 [Ajt93] their technique seems to require an arbitrary polynomial
amount of non-uniform advice. Corollary 6 quantifies the amount of nonuniformity that is necessary to
derandomize a probabilistic AC0 circuit, and therefore can be viewed as a refinement of their result.
The same approach, together with a new pseudorandom generator of Viola [Vio05], yields similar results
for circuits with a bounded number of parity or majority gates – see Corollary 17 in Section 4.2.

An Optimal Bitwise ε-Biased Generator in AC0[⊕] Gutfreund and Viola [GV04] study the
complexity of constructing bitwise3 ε-biased generators (see Definition 8). They give a construction in
uniform AC0[⊕] whose seed-length is optimal for ε = Ω(1/poly log log(m)) (where m is the number of
output bits) and sub-optimal for smaller ε. Healy and Viola [HV06] give an optimal construction in
uniform TC0 and a sub-optimal construction in uniform AC0[⊕] whose parameters are incomparable to
those of [GV04]. In this work, we resolve this question entirely – using our sampler (and [NN90, GV04]),
we construct an optimal bitwise ε-biased generator in uniform AC0[⊕]:

Corollary 7. For every ε > 0 and m, there is an ε-biased generator G : {0, 1}n → {0, 1}m with
n = O(log m + log(1/ε)) such that uniform AC0[⊕] circuits of size poly(n, log m) = poly(n) can
compute G(s)i given (s, i) ∈ {0, 1}n × [m].

It is known that ε-biased generators require seed length Ω(log m + log(1/ε)) [AGHP92], and it can be
shown that bitwise ε-biased generators achieving the parameters of Corollary 7 require AC0 circuits of
exponential size [GV04, MNT90]. Therefore, the construction of Corollary 7 is tight both in terms of
seed-length and computational complexity.

1.4 Organization

The remainder of this paper is organized as follows. Some technical preliminaries are recalled in Section
2. In Section 3 we prove Theorem 3 and also describe an alternate sampler construction. The proofs of
the applications described above can be found in Section 4. Section 5 is devoted to proving Theorem
1 as well as an alternate Chernoff bound, and some open questions are discussed in Section 6.

2 Preliminaries

For a positive integer n, we denote the set {1, . . . , n} by [n].
3[GV04] calls such generators explicitly computable.

6

2.1 ε-Biased Sets and Generators

Small-biased spaces appear in two ways in this work. First, poly-size ε-biased sets are used to con-
struct expander graphs on which our sampler construction is based (Lemma 10). Second, one of the
applications of our sampler is to build exponential-size ε-biased sets that are bitwise computable (see
the definition below and Corollary 7).

Definition 8. For a, b ∈ Zm
2 , let 〈a, b〉2 denote the inner product of a and b modulo 2.

A multi-set S ⊆ Zm
2 is ε-biased if for all non-zero y ∈ Zm

2 , Prx∈S [〈x, y〉2 = 1] ∈ [1/2− ε, 1/2 + ε].

An ε-biased generator is a function g : {0, 1}` → {0, 1}m such that the multi-set {g(s) | s ∈ {0, 1}`} is
an ε-biased multi-set.

A bitwise ε-biased generator is a function g : {0, 1}` × [m] → {0, 1} such that the function g′(s) =
(g(s, 1), g(s, 2), . . . , g(s,m)) is an ε-biased generator.

2.2 Expander Graphs

Informally, expander graphs are sparse-yet-highly-connected graphs. While there are a variety of
equivalent notions of graph expansion (see, e.g., [AS00, Gol99, HLW06]), it is most convenient for us
to work with the following spectral definition. (Recall that a directed graph is d-regular if every node
has in-degree and out-degree equal to d, and a directed graph is regular if it is d-regular for some d.)

Definition 9. Let G be a regular directed graph on N nodes with transition matrix P , and let u =
(1/N, . . . , 1/N) ∈ RN denote the uniform distribution on G. We say that G is a λ-expander if

max
x∈RN

〈x,u〉=0

‖Px‖
‖x‖ ≤ λ.

When G is undirected, this definition is equivalent to the second-largest eigenvalue of P being at most
λ in absolute value – see, e.g., [Mih89, Fil91].

We often abuse language and refer to a “λ-expander”, when we really mean a “family of λ(n)-expanders
of size s(n)” for some function s(n). Also, when we simply refer to an “expander graph”, without
mention of λ, it is understood that we mean a family of λ-expanders for some constant λ < 1.

By a random walk on a d-regular graph G, we mean the following process: choose a random starting
vertex v0 ∈ G, and for i = 1, . . . , k, let vi be a uniformly random neighbor of vi−1 in G and output
v1, . . . , vk. Note that we are discarding the starting vertex v0, although it is easy to see that the
distribution is unchanged even if we keep v0. We prefer this convention as it simplifies our notation and
presentation. We also note that such a walk is described by a tuple (v0, s1, . . . , sk) ∈ [|G|]×[d]×· · ·×[d],
and hence by a string of log |G|+ O(k log d) bits.

7

2.3 Circuits

Recall that NC1 denotes the class of functions f : {0, 1}n → {0, 1} computable by circuits of size
poly(n) and depth O(log n) over the basis {∧,∨,¬} (where all the gates have fan-in 2). We also
consider three classes of unbounded fan-in constant-depth circuits of polynomial size: circuits over the
bases {∧,∨¬} (i.e., AC0), {∧,∨,Parity ,¬} (i.e., AC0[⊕]), and {∧,∨,Majority ,¬} (i.e., TC0). Unless
explicitly stated otherwise, all circuits are of polynomial size and uniform – specifically, we adopt
the standard of Dlogtime-uniformity [BIS90], a notion of uniformity which is even more restrictive
than logspace-uniformity and which has become the generally-accepted convention for uniformity in
constant-depth circuits. Informally, a circuit is Dlogtime-uniform if, given the indices of two gates in
the circuit, one can determine the types of the gates and whether they are connected in linear time in
the length of the indices (which is logarithmic in the size of the circuit).

When referring to non-uniform circuits, we always indicate this explicitly using slash notation: for
example, AC0/O(n) is the class of boolean functions f : {0, 1}n → {0, 1} such that there exists a
Dlogtime-uniform AC0 circuit family Cn : {0, 1}n × {0, 1}O(n) → {0, 1} for which there is a single
advice string an of length O(n) such that Cn(x, an) = f(x) for all x ∈ {0, 1}n.

The probabilistic classes BP ·AC0,BP ·AC0[⊕],BP ·TC0 and BP ·NC1 are all defined in the natural
way: the circuit takes two inputs, one of n bits and one of r(n) random bits for some polynomially-
bounded function r(n), and for any fixed input x ∈ {0, 1}n, the circuit should correctly compute the
function with probability at least 2/3 over the r(n) random bits.

Recall that AC0 (AC0[⊕] (TC0 ⊆ NC1 ⊆ L, where the last inclusion holds under logspace unifor-
mity and the separations follow from works by Furst et al. [FSS84] and Razborov [Raz87], respectively
(and hold even for non-uniform circuits). Despite these lower-bounds, AC0 can compute the approx-
imate majority of n bits [Ajt93] – in particular, for any constant ε > 0, there exists a family of AC0

circuits that correctly computes the majority function for all inputs with at most a n/2 − εn ones
and for all inputs with at least n/2 + εn ones. See, e.g., [H̊as87, Vol99] for additional background on
constant-depth circuits.

3 The Sampler Construction

In this section, we describe our sampler construction and prove Theorem 3. Recall that our goal is
to construct a sampler Γ : {0, 1}m → ({0, 1}n)k that matches the parameters of random walks on
expander graphs. Naturally, one way to achieve this would be to exhibit a family of constant-degree
expander graphs on 2n nodes and show that walks of length k on these expanders can be computed in
AC0[⊕] of size poly(n, k). Unfortunately, we do not know of any such family of expanders. Indeed,
Gutfreund and Viola [GV04] observe that AC0[⊕] cannot compute walks on the Margulis/Gabber-
Galil expander, and the same argument can easily be extended to rule out the possibility of AC0[⊕]
circuits that compute walks on a variety of other natural expander graphs. (Nevertheless, it does seems
plausible that AC0[⊕] circuits could compute walks on some constant-degree expander family – see

8

the discussion in Section 6.)

In light of this, we begin instead with a family of expander graphs of degree poly(n) where walks are
computable in AC0[⊕] – note that a walk of length k on such a graph is described by a seed of length
n + O(k · log n) – and then we derandomize the walk on this graph to achieve the optimal seed length
n + O(k). This derandomization uses random walks on a smaller expander graph, and its analysis is
based on the zig-zag graph product of [RVW02].

In the sequel, we focus on the case where k = Ω(log n) since by [GV04] it is known that AC0 circuits
can compute walks of length log n on the Margulis/Gabber-Galil graph of size 2n.

3.1 The Construction

Our first graph, G, is a Cayley graph on the group Zn
2 . Specifically, we construct a 1/n-biased set S ⊂ Zn

2

of size poly(n) (see Definition 8) and let {v, w} be an edge if and only if v ⊕ w ∈ S. The following
well-known fact guarantees that G has second-largest eigenvalue at most 2/n (e.g., see [AR94]).

Lemma 10. A Cayley graph on Zn
2 with generators S ⊂ Zn

2 is a 2ε-expander if and only if S is ε-biased.

Before continuing, let us see how walks on G can be computed in AC0[⊕]. First, we note that a
1/n-biased set S of size poly(n) can be constructed in AC0. For instance, we may use the “Powering
Construction” of an ε-biased generator from [AGHP92] together with the results on field arithmetic of
[HV06].4 (Note that for a non-uniform construction, we could simply hard-wire such an ε-biased set
into the circuit.)

Next, we observe that the neighbors of a node v ∈ {0, 1}n are the nodes {v⊕ g(s) | s ∈ {0, 1}`}, where
g : {0, 1}` → {0, 1}n is the ε-biased generator defining the ε-biased set S and ` = O(log n). Thus, a
random walk starting at v is obtained by letting v0 = v and vi = vi−1 ⊕ g(si) for randomly chosen

seeds si ∈ {0, 1}`, and in particular vi = v0 +
i⊕

j=0
g(sj).

Hence, given the description a walk (v, s1, . . . , sk) ∈ {0, 1}n×{0, 1}`×· · ·×{0, 1}`, to determine the i-th
vertex visited by the walk, the circuit need only compute from each seed sj (in parallel) the appropriate
vector g(sj) ∈ S and then compute the sum v +

⊕i
j=1 g(sj). This is clearly computable by AC0[⊕]

circuits of size poly(n, k). In fact, the parity gates only appear at the outputs and each parity has
fan-in at most k + 1.

Now we turn to the problem of producing a pseudorandom sequence of steps sj , with the goal of
reducing the seed length of a walk on G, while at the same time preserving the sampling properties

4Specifically, let m = log n (assuming that log n is an integer for simplicity) and consider the finite field F22m with

22m elements (viewed as the ring of polynomials over F2 modulo an irreducible polynomial of degree 2m). The generator

outputs 24m = n4 vectors vα,β of dimension 2m = n, indexed by pairs of elements α, β ∈ F22m , where the i-th bit of

vα,β is given by 〈αi, β〉2. It is shown in [AGHP92] that such a generator has bias less than 2m/22m = 1/n, and it is

shown in [HV06] that all the necessary field arithmetic can be carried out in uniform AC0 of size poly(n) for this range

of parameters.

9

of such walks. Our approach is motivated by the zig-zag product of Reingold, Vadhan and Wigderson
[RVW02]. Roughly speaking, one may interpret their results as saying the following: to derandomize
a walk on a graph G of degree d, it suffices to choose the steps in G according to a random walk on
a constant-degree expander graph H of size d. (For technical reasons, their result requires the graph
H to be the square of an expander graph, but we ignore this for the moment.) Specifically, to take a
pseudorandom k-step walk in G:

1. Choose a random starting vertex v0 ∈ G.

2. Choose a random w0 ∈ H and take a random walk of length k on H, visiting nodes w1, . . . , wk.

3. View w1, . . . , wk as indices in [d] (recalling that |H| = d).

4. Use w1, . . . , wk as the steps of a walk (starting at v0) in G.

5. Output the nodes v1, . . . , vk ∈ G visited by the walk from Step 4.

Note that the seed length of such a sampler is |v0| + (|w0| + O(k)) = n + log |H| + O(k) = n + O(k)
(since we assume k = Ω(log n)), as desired. Moreover, one can show (using the results of [RVW02])
that the forgoing construction is a strong averaging sampler. What is not clear, however, is how to
compute this sampler in AC0[⊕]. The reason is that it requires a long walk on the graph H, and while
H is small (only poly(n) nodes) compared to G (which has 2n nodes), we do not know how to take such
a long walk (on any constant-degree expander family) in AC0[⊕], or even in NC1 for that matter.

In order to circumvent this obstacle, we derandomize the walk on G by using many short walks on H,
rather than a single long walk.

Construction 11.

1. Choose a random starting vertex v0 ∈ G.

2. Take k/ log n independent random walks each of length log n in H, where the i-th walk visits
w

(i)
1 , . . . , w

(i)
log n ∈ H.

3. View w
(1)
1 , . . . , w

(1)
log n, w

(2)
1 , . . . , w

(2)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as indices in [d].

4. Use w
(1)
1 , . . . , w

(1)
log n, . . . , w

(k/ log n)
1 , . . . , w

(k/ log n)
log n as the steps of a walk (starting at v0) in G.

5. Output the nodes v1, . . . , vk ∈ G visited by the walk from Step 4.

This sampler has seed length |v0|+ (k/ log n) · (log |H|+ O(log n)) = n + O(k) (again, since we assume
that k = Ω(log n)). Furthermore, we show below that this construction is a strong averaging sampler,
achieving the same parameters as a random walk on a constant-degree expander graph. Before proving
this, however, we observe that this walk is computable in AC0[⊕]. Indeed, it is known how to compute
walks of length O(log n) on poly-sized explicit expanders of constant degree in AC0 [Ajt93, GV04],
and thus each of the five steps above is computable in constant depth. (As with the 1/n-biased set S

above, the non-trivial issue here is the uniformity of the circuits; if we only wish to give a nonuniform
construction we could simply hard-wire all the possible walks of length log n into the circuit.)

10

3.2 The Analysis

We now show that Construction 11 is a strong averaging sampler. In particular, Theorem 3 is a
consequence of the following lemma:

Lemma 12. Let H = H̃2 where H̃ is a constant-degree expander graph on poly(n) nodes. Then
Construction 11 is a strong (γ, ε)-averaging sampler with seed length n + O(log(1/γ)/ε2) and sample
complexity O(log(1/γ)/ε2).

Proof. Our proof relies on the zig-zag product of [RVW02], so we briefly recall that construction.

Zig-Zag Product Let G be a regular graph of degree d on vertices VG whose edges are labeled with
the names 1, . . . , d in such a way that no two incident edges share the same label.5 (Note that under
such a labeling, if w is the “i-th neighbor of v”, then v is the “i-th neighbor of w” – the graph G,
defined above, clearly has this property, as it is a Cayley graph on a group of characteristic 2.) Then if
g is a regular graph on vertices Vg where |Vg| = d, we may form the zig-zag product graph G©z g where:

• G©z g has vertices VG × Vg

• {(v, w), (v′, w′)} is an edge if there is an x ∈ Vg such that (w, x, w′) is a path in g and v′ is the
x-th neighbor of v in G. (Note that the labeling condition on G ensures this is symmetric.)

Thus, if we start at (v, w) ∈ G©z g, a step to a random neighbor (v′, w′) has following form:

• Choose a random neighbor x of w in g.

• Set v′ to be the x-th neighbor of v in G.

• Choose a random neighbor w′ of x in g.

In particular, if we only consider the VG-coordinate of a random walk of length ` in G©z g (starting at
a random vertex), it has the same distribution as the following process:

• Choose a random start vertex v0 ∈ VG.

• Take a random walk w1, w2 . . . , w` in g2.

• For i > 0, let vi to be the wi-th neighbor of vi−1 in G.

• Output v1, v2, . . . , v`.

Thus, each of of the segments of length k/ log n in our sampler construction corresponds to a random
walk on G©z H̃, projected onto the VG-coordinate. But what about the boundaries between these
segments? In this case, Construction 11 says we choose a new, entirely-random node of H̃ and then
continue the walk on G. This is equivalent to taking a step on G©z Kd, i.e., the zig-zag product of
G with a complete graph (with self-loops) on d nodes. Therefore, the output of our sampler is the
projection onto the VG-coordinate of a random walk on a time-varying graph that is G©z H̃ most of

5The zig-zag product of [RVW02] actually applies in much greater generality; however, this simplification suffices for

our application.

11

the time, and G©z Kd once every log n steps. We now show that this output satisfies Definition 2 for
the desired parameters.

First we note for any function f : VG → [0, 1] there is a natural lift of f to f̂ : VG×VH̃ → [0, 1], defined
by f̂(v, w) = f(v), and it is clear that the lift f̂ has the same average as f . Therefore, to conclude that
the projection of a random walk yields a strong averaging sampler, it suffices to show that a random
walk on the forgoing time-varying graph is a strong averaging sampler. By Remark 21 (following the
proof of Theorem 1), it does not matter that the graph is varying over time: as long as the graph is
a λ-expander at every point in time, the random walk is a good sampler. Thus, we are left with the
task of showing that G©z H̃ and G©z Kd are expanders. For this, we apply the following consequence
of the main theorem of [RVW02]:

Lemma 13 ([RVW02], Corollary to Theorem 4.3). Let G be a regular graph of degree d whose edges are
labeled with 1, . . . , d in such a way that no two incident edges share the same label, and let g be a regular
graph on d nodes. If G is a λG-expander and g is a λg-expander, then G©z g is a (λG + λg)-expander.

By Lemma 10, G is a 2/n-expander, and by assumption H̃ is a λ-expander for some constant λ < 1.
So by Lemma 13, G©z H̃ is a (2/n + λ)-expander, i.e. a λ′-expander for some constant λ′ < 1 (when
n > 2/(1− λ)).

It is not hard to see that Kd, the complete graph (with self-loops) on d nodes, is a 0-expander, and
therefore by Lemma 13, G©z Kd is a (2/n)-expander, i.e. a λ′′-expander for some constant λ′′ < 1
(when n > 2).

Thus our sampler stretches a seed of length n + O(k) into k samples (of n bits each) that satisfy
the bound from Theorem 1 for some constant λ < 1. Specifically, the sampler approximates the
mean of the fi’s with error ε and confidence 1 − γ = 1 − e−Ω(ε2k); in other words, the seed length
is n + O(k) = n + O(log(1/γ)/ε2) and the sample complexity is k = O(log(1/γ)/ε2). Lemma 12
follows.

3.3 An Alternate Sampler Construction

In this section we describe an alternate implementation of a sampler in AC0[⊕]. While this construction
uses many of the same tools as Construction 11, the fundamental approach is different and is inspired
by the paradigm of sampler composition [BGG93, Gol97], rather than the zig-zag graph product.

We note that the general median of averages composition of [BGG93, Gol97] does not result in an
averaging sampler, which is the kind of sampler we consider in this work. Nonetheless, the same ideas
can be employed here to obtain an averaging sampler, albeit with weaker parameters. For constant
error ε, this sampler (Construction 14) matches the parameters of Construction 11. In fact, it is possible
to generalize this construction to handle sub-constant ε; however, if one insists that the sampler be
in AC0[⊕], then this approach cannot handle ε smaller than 1/polylog(n). Thus, to simplify the
presentation we only treat the case of constant ε; moreover the case of constant ε is most common in
applications.

12

Recall that Construction 11 employed short walks on a small expander, H, to select the steps to be
made in the large expander G. Thus, H was used to derandomize the long walk on G. For the present
construction, however, we shall instead use a long walk on a large auxiliary graph (denoted G′ below)
to select seeds for short walks on a large expander graph (the Margulis/Gabber-Galil expander).

Recall the ε-biased expander G from the proof of Theorem 3. Here we define G′ in the same way, but on
the vertex set {0, 1}n+3 log n instead of {0, 1}n; that is, we construct a 1/n-biased set S ⊂ {0, 1}n+3 log n

of size poly(n), and take G′ to be the Cayley graph on Zn+3 log n
2 with generators S.

Construction 14.

1. Choose a random starting vertex v′0 ∈ G′.

2. Take a (k/ log n)-step random walk v′1, . . . , v
′
k/ log n on G′.

3. View each v′i ∈ {0, 1}n+3 log n as a (log n)-step walk on the Margulis/Gabber-Galil expander of size
2n and degree 8.

4. Expand each such walk v′i into the nodes v
(i)
1 , . . . , v

(i)
log n ∈ {0, 1}n that it visits.

5. Output the k samples v
(1)
1 , . . . , v

(1)
log n, . . . , v

(k/ log n)
1 , . . . , v

(k/ log n)
log n .

This generator is computable in uniform AC0[⊕] since each of the required ingredients is computable
in uniform AC0[⊕], as discussed in Section 3.1. Moreover, it is a good sampler for constant ε:

Proposition 15. For any constant ε > 0, Construction 14 is a strong (γ, ε)-averaging sampler with
seed-length n + O(k) = n + O(log(1/γ)) and sample complexity k = O(log(1/γ)) (where the hidden
constants depend on ε).

Proof. We begin by noting that the number of random bits used by Construction 14 is n + O(log n) +
(k/ log n) ·O(log n) = n + O(k) (since we assume that k = Ω(log n)) and its sample complexity is k by
construction. We show below that this sampler has error at most γ = 2−Ω(k) when ε > 0 is a constant;
in other words, Construction 14 has seed length n + O(k) = n + O(log(1/γ)) and sample complexity
k = O(log 1/γ), as claimed.

In the following analysis, we shall confine ourselves to the case of sampling a single function (i.e.,
showing that Construction 14 is a non-strong averaging sampler). The proof that it is a strong sampler
is completely analogous and simply follows from the fact that all the Chernoff bounds we apply are
strong Chernoff bounds.

Let f : {0, 1}n → [0, 1] be the function that is being sampled, and let ρ = Ex[f(x)]. We first observe
that a (log n)-step random walk on the Margulis/Gaber-Galil Expander of size 2n is likely to estimate
ρ to within additive error ε/2. Indeed, if we let x1, . . . , xlog n be a (log n)-step random walk on this
expander, then by Theorem 1,

Pr




∣∣∣∣∣∣
1

log n

log n∑

j=1

f(xj)− µ

∣∣∣∣∣∣
≥ ε/2


 ≤ e−

ε2(1−λ) log n
4 = 1/nc,

for some positive constant c < 1/4 (since we assume ε is constant).

13

Construction 14 then says to choose the seeds to these (log n)-step walks according to a walk of length
k/ log n on a 2/n-expander G′ of degree poly(n). We expect at most a 1/nc fraction of the short walks
chosen in this way to yield poor estimates of ρ (i.e. not estimate ρ within ±ε/2); however, it is enough
to hope that at most an ε/2 fraction of the short walks are poor estimates in order to conclude that the
average over all Θ(log n) · k/ log n = k samples will be ρ ± ε. Moreover, we would like this to happen
with probability 1 − 2−Ω(k). However, to conclude this we need to apply a sharper Chernoff bound
than Theorem 1. Indeed, for a walk of length k/ log n Theorem 1 will never yield an failure probability
smaller than 2−O(k/ log n) and we would like to bound the failure probability by 2−Ω(k).

Fortunately, G′ is a very good expander (in particular, a 2/n-expander) and so we may apply Corollary
23. Indeed, we are interested in accurately sampling a set of density 1/nc (the bad (log n)-step walks),
and G′ has eigenvalue 2/n ≤ (1/nc)2/3 (for sufficiently large n), as required to apply Corollary 23.
Specifically, we let X be the random variable that counts how many of the (log n)-step walks are not
ρ± ε/2, so that X has expectation at most 1

nc · k
log n , and then by Corollary 23

Pr
[
X ≥ ε

2
· k

log n

]
≤

(
2e

ε · nc

) 1
2
· ε
2
· k
log n

=
(

1
nΩ(1)

) k
log n

= 2−Ω(k),

since we assume ε is a constant.

That is, with probability 1 − 2−Ω(k), at least a 1 − ε/2 fraction of the (log n)-step walks estimate ρ

to within additive error ε/2, and hence the average over all the samples is ρ ± ε. In other words, the
probability that Construction 14 does not estimate ρ within additive error ε is at most γ = 2−Ω(k), and
the result follows.

3.4 Sampling vs. Hitting

Many applications of expander walks do not require the full power of the Chernoff bound. For example,
the randomness-efficient error reduction of [CW89, IZ89], ε-biased sets of [NN90], the amplification of
[GIL+90] and the derandomized XOR lemma of [IW97] only require the hitting property of expander
walks; i.e., they require that for any set T ⊆ V of size at most |V |/2, the probability that a k-step
random walk never leaves T is at most 2−Ω(k). (Strictly speaking, some of these results seem to
require the strong hitting property of expander walks discussed in the introduction.) The latter three
applications use the hitting property in a very natural way: in each case, the construction requires a
sequence of objects that are combined in some way (e.g., addition, concatenation or XOR) and the
proof of correctness only requires that at least one of these objects is “good” – furthermore, it is shown
that “good” objects are abundant. Thus, by choosing these objects according to an expander walk
and applying the hitting property, at least one of them will be “good” with high probability. For error
reduction, it is less obvious that the (strong) hitting property suffices, although it does.6

6Roughly, this is proved as follows: we suppose the algorithm of interest uses r-bits of randomness and has error

probability at most 1/20. The new algorithm chooses k random r-bit strings according to an expander walk and outputs

the majority vote of the k executions of the algorithm using these random strings. For the analysis, we fix an input x

and consider the set of random strings Tx that cause the original algorithm to err on x, and thus we have |Tx| ≤ 2r/20;

14

In light of this, it would have been sufficient to simply show that Constructions 11 and 14 satisfy
the strong hitting property in order to prove the results discussed in Section 4. Nonetheless, we
choose to show that these constructions are strong samplers – our motivation for doing so is twofold.
Firstly, for certain applications (especially error-reduction) the Chernoff-like behavior of the sampler
makes for simpler and, we feel, more natural proofs than the approach based on a strong hitting
generator. Secondly, we would like to say that our sampler can be used in place of an expander walk
for “any conceivable application”, and some applications of expander walks do seem to require the
strong sampling property – for instance, constructing randomness extractors.

Loosely speaking, an extractor Ext : {0, 1}m×{0, 1}d → {0, 1}n is a function that takes an m-bit input
that is somewhat random, together with a short d-bit seed that is truly random and outputs an n-bit
string that is very close to random. (For background on extractors, see the survey of Shaltiel [Sha02].)

One useful construction of an extractor (for sources of high, constant min-entropy) is based on random
walks on expanders. Specifically, suppose that W : {0, 1}m → ({0, 1}n)k computes a walk of length
k = Θ(n) on a constant-degree expander (and thus m = n + O(k) = Θ(n)). Then the function
Ext : {0, 1}m × [k] → {0, 1}n defined by Ext(x, s) def= W (x)s is a strong extractor for sources x of
min-entropy at least (1 − β)m for some constant β > 0; this follows from Theorem 1 (see [Zuc97]
and [Zuc06]). Furthermore, the analysis of this extractor only depends on the fact that an expander
walk is a strong sampler; therefore we may replace W with the sampler Γ of Theorem 3 to obtain
such an extractor that is computable by uniform AC0[⊕] circuits. In particular, by the same proof as
Proposition 4.2 of [Zuc06], we have the following corollary.

Corollary 16. For all ε, α > 0, there exists β > 0 such that there is a family of strong ((1− β)m, ε)-
extractors Ext : {0, 1}m × {0, 1}d → {0, 1}n with n ≥ (1− α)m and d ≤ log(αm) that is computable by
AC0[⊕] circuits of size poly(m). That is, for any m-bit source X with min-entropy at least (1− β)m
and an independent uniform d-bit seed Y , the distribution (Ext(X,Y), Y) is ε-close (in total variation
distance) to the uniform distribution on n + d bits.

4 Proofs of Other Results

4.1 Error Reduction

Corollary 4 (restated). Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP·
AC0[⊕] (respectively, BP ·TC0 or BP ·NC1) circuits with error at most 1/3 using r = r(n) random
bits. Then for any δ = δ(n) > 1/2O(poly(n)), f has polynomial-size uniform BP ·AC0[⊕] (respectively,
BP ·TC0 or BP ·NC1) circuits with error at most δ using r + O(log(1/δ)) random bits.

to bound the probability that at least k/2 of the sampled strings land in Tx, we consider all sequences of sets S1, . . . , Sk

where each Si is either Tx or its complement and where at least k/2 of the Si’s are Tx. It is easy to see that there are

2k/2 such sequences, and by an appropriate version of the strong hitting property and a suitably good expander graph,

one can show that the probability that a walk exactly follows such a given sequence of sets is less than (1/4)k. Therefore,

the probability that a random walk hits any of these 2k/2 sequences is less than (2k/2) · (1/4)k < 2−k.

15

Proof sketch. Let Cf be a circuit computing f . Construct the circuit that, on input x ∈ {0, 1}n, runs
k = Θ(log(1/δ)) copies of Cf in parallel using independent random r-bit blocks of randomness, and then
computes the (5/12, 7/12)-approximate majority of the outputs [Ajt93]. (For BP ·TC0 and BP ·NC1

we can just compute the majority exactly.) Now, instead of using independent random bits for each
block, we apply the construction of Γ : {0, 1}r+O(k) → ({0, 1}r)k from Theorem 3 (with ε = 1/12 and
γ = δ) to generate the necessary random bits from a seed of length r + O(k).

For any fixed input x, the probability that a randomly chosen r + O(k)-bit random string causes the
algorithm to fail (i.e., that more than 5/12 of the outputs of Γ fall in the set of random strings that
cause Cf to fail) is at most 2−Ω(k) = 2−Ω(Θ(log 1/δ)) since Γ is an averaging sampler (and the latter set
has density at most 1/3). By choosing the constants appropriately, this is at most δ and the result
follows.

Corollary 5 (restated). Let f : {0, 1}n → {0, 1} be a function computable by polynomial-size uniform BP·
AC0 circuits with error at most 1/3 using r = r(n) random bits. Then for any δ = δ(n) > 1/2O(poly(n)),
f has polynomial-size uniform BP · AC0 circuits with error at most δ using min{r,polylog(n)} +
O(log(1/δ)) random bits.

Proof sketch. Let Cf be a circuit computing f . By applying Nisan’s pseudorandom generator for
BP ·AC0 [Nis91] (which has been shown to be computable in AC0 in [Vio04]), we may assume, with
no loss of generality, that Cf uses only r′ = r′(n) = min{r(n), logc(n)} random bits for some constant
c that may depend on f .

If δ ≥ 1/2r′ , then we may apply the construction of Corollary 4 to obtain a BP · AC0 circuit that
has error at most δ and uses r′ + O(log(1/δ)) bits of randomness. (The circuit is in BP ·AC0, and
not just BP · AC0[⊕] because one can readily check that all the necessary parities are on at most
O(r′) = O(logc n) bits, and can therefore be computed by a constant-depth circuit of size poly(n).)

If, on the other hand, δ < 1/2r′ , then we apply Corollary 4 with δ(n) = 2−r′ to obtain an AC0 circuit
that has error at most 2−r′ and uses r′ + O(r′) ≤ O(r′) random bits. We now apply Θ(log(1/δ)/r′)
such circuits in parallel (on the same input, but independent random strings), and take the approxi-
mate majority of their Θ(log(1/δ)/r′) outputs. Thus we have a circuit taking O(r′) ·Θ(log(1/δ)/r′) =
O(log(1/δ)) ≤ r′ + O(log(1/δ)) random bits and having error less than (2−r′)Θ(log(1/δ)/r′) (by a multi-
plicative Chernoff bound, such as Theorem 4.1 on p. 68 of [MR95]). This is at most δ by an appropriate
setting of constants, and the result follows.

4.2 Derandomization with Linear Advice

Corollary 6 (restated). uniform BP ·AC0 ⊆ uniform AC0/O(n).

Proof. Apply Corollary 5 to obtain a BP ·AC0 circuit with error less than 2−n using r = O(n) random
bits. By a union bound, at least one r-bit string causes the circuit to correctly decide all inputs. Fix
one such string as the non-uniform advice and the result follows.

16

Corollary 17. Let AC0[⊕log] be the class of boolean functions computable by poly(n)-size AC0 circuits
having O(log n) parity gates, and similarly let AC0[SYMlog] be the class of boolean functions computable
by poly(n)-size AC0 circuits having O(log n) arbitrary symmetric gates (e.g., parity and majority
gates). Then the following inclusions hold:

1. BP ·AC0[⊕log] ⊆ AC0[⊕]/O(n)

2. BP ·AC0[SYMlog] ⊆ TC0/O(n)

Proof sketch. The proof is similar to the proofs of Corollaries 5 and 6, except that we use the generator
of Viola [Vio04] instead of Nisan’s. Specifically, the generator from [Vio04] allows us to assume,
without loss of generality, that any function f ∈ BP · AC0[⊕log] (respectively, BP · AC0[SYMlog])
can be computed by a BP ·AC0[⊕] (respectively, BP ·TC0) circuit using only no(1) random bits. By
applying Corollary 4, we may reduce the error to less than 2−n using only no(1) +O(n) = O(n) random
bits. Finally, a union bound yields a single advice string of O(n) bits that works for all inputs.

4.3 An Optimal bitwise ε-biased generator in AC0[⊕]

Corollary 7. For every ε > 0 and m, there is an ε-biased generator G : {0, 1}n → {0, 1}m with
n = O(log m + log(1/ε)) such that uniform AC0[⊕] circuits of size poly(n, log m) = poly(n) can
compute G(s)i given (s, i) ∈ {0, 1}n × [m].

Proof idea. We follow the approach of [GV04] and implement the ε-biased generator of Naor and
Naor [NN90]. This generator employs a 7-wise independent generator to construct a small set of
“distinguishers” (an object that is weaker than an ε-biased set), and from these it is possible to obtain
an ε-biased generator by choosing many such distinguishers (independently) and taking a random
linear combination of them. However, to improve the seed-length of their generator, [NN90] choose
these distinguishers according to a walk on an expander graph. Thus, to construct a bit-wise ε-biased
generator in AC0[⊕], [GV04] require a bit-wise 7-wise independent generator and long expander walks
that are each computable by AC0[⊕] circuits. Constructions of bit-wise 7-wise independent generators
in AC0[⊕] are known [GV04, HV06], and since the analysis of [NN90] only uses the fact that an
expander walk is a good hitting generator, our sampler construction from Section 3 can be used in
place of the expander walk.

5 Strong Chernoff Bounds for Expander Walks

In this section we give an elementary proof of a generalization of Gillman’s Chernoff Bound for Expander
Walks [Gil94] (Theorem 1) as well as a (strong) multiplicative Chernoff bound for expander walks that
is sharper than Theorem 1 when the eigenvalue λ is small (Theorem 22 and Corollary 23).

17

5.1 The Proof of Theorem 1

This section is devoted to proving the following theorem.

Theorem 1 (restated). Let G be a regular λ-expander on V and fix a sequence of functions fi : V →
[0, 1] each with mean µi = Ev[fi(v)]. If we consider a random walk v1, . . . , vk on G, then for all ε > 0,

Pr

[∣∣∣∣∣
k∑

i=1

fi(vi)−
k∑

i=1

µi

∣∣∣∣∣ ≥ εk

]
≤ 2e−

ε2(1−λ)k
4 .

Wigderson and Xiao [WX05] have recently established essentially the same bound (up to constants)
using techniques from perturbation theory. Gillman’s proof (which treats the case where f1 = · · · = fk)
also employs results from perturbation and complex analysis to obtain a similar bound. In contrast,
the proof presented here has only very modest prerequisites, which are summarized in the following
paragraph.

Background We work with a regular λ-expander G on N nodes (see Definition 9). In particular, if
we denote G’s transition matrix by P and write u = (1/N, . . . , 1/N) ∈ RN , then Pu = u and

max
x∈RN

〈x,u〉=0

‖Px‖
‖x‖ ≤ λ.

For any z ∈ RN , we let z‖ = 〈1, z〉u denote the component of z in the direction of 1 = (1, . . . , 1) ∈ RN

and we let z⊥ = z−z‖ = z−〈1, z〉u denote the component of z orthogonal to 1. Thus, for any z ∈ RN ,
we have that Pz‖ = z‖ and ‖Pz⊥‖ ≤ λ · ‖z⊥‖. Another useful fact is that for any z ∈ RN , the vector
Pz⊥ is orthogonal to 1 simply because 〈1, Pz⊥〉 = 1T Pz⊥ and 1T P = 1T since we assume G is regular.

Proof of Theorem 1. Define the random variable X =
∑

i fi(vi) where v1, . . . , vk is a random walk on
G, and let µ =

∑
i µi = E[X]. We shall bound the quantity Pr [X ≥ µ + εk] and the same bound will

follow for Pr [X ≤ µ− εk] by replacing the functions fi(v) with 1 − fi(v). Let r ≤ log(1/λ)/2 be a
positive parameter to be specified later.

Pr [X ≥ µ + εk] = Pr
[
erX ≥ erµ+rεk

]
≤ E

[
erX

]

erµ+rεk
(1)

where the last step follows by applying Markov’s inequality.

We now focus on bounding E
[
erX

]
. Let P be the probability transition matrix for G, and for each

function fi let Ei be a diagonal matrix with diagonal entries
(
erfi(v)

)
v∈V

. It is not hard to see that

E
[
erX

]
= 1T EkPEk−1P · · ·E1Pu, (2)

since every non-zero cross-term in this matrix product corresponds to exactly one walk v1, . . . , vk on
G and each such term is exactly the probability of the walk times e

∑
i fi(vi).

Thus far, the techniques are quite standard. Indeed, the typical recipe for proving a Chernoff bound
begins by reducing the task to bounding the moment-generating function E

[
erX

]
, and many previous

18

tail bounds for Markov chains make use of the identity (2) (albeit with E1 = · · · = Ek) to bound
E

[
erX

]
[Gil94, Din95, Kah97, L9́8, LP04, WX05].

At this point, however, the proof diverges from previous approaches in that we bound (2) inductively
using elementary manipulations. This is in contrast to the previous works that rely heavily on the
machinery of perturbation theory (with the exception of [Kah97] which uses a novel eigenvalue argu-
ment), and also allows us to treat the case of sampling distinct function f1, . . . , fk (which is not readily
amenable to previous techniques, except in the case of [WX05]).

Specifically, to bound the quantity (2), we study the sequence of vectors z0 = u, z1 = E1Pu, z2 =
E2PE1Pu, . . . inductively. Indeed, we note that

E
[
erX

]
= 1T EkPEk−1P · · ·E1Pu = 〈1, zk〉 = 〈1, z‖k〉 =

√
N · ‖z‖k‖, (3)

and so our goal is to bound ‖z‖k‖.
We bound ‖z‖k‖ by first showing (in Lemma 19) that each of the zi’s remains nearly parallel to u (since
Ei is close to the identity matrix when r is small, and moreover P helps shrink any component of zi

that is not parallel to u). Then we observe (in Lemma 20) that Ei stretches u (and hence the zi’s,
since they are nearly parallel to u) by a factor of Ev

[
erfi(v)

] ≈ er Ev [fi(v)] = erµi (again, when r is
small) which in turn ensures that E

[
erX

] ≈ erµ; more precisely, we find that E
[
erX

] ≤ erµ+r2k/(1−λ).
This bounds the probability in (1) by e(r2/(1−λ)−εr)k, and the result follows by choosing r to minimize
this probability, i.e. r = (1− λ)ε/2.

In the manipulations that follow, it may be worthwhile to bear in mind that we ultimately choose r to
be small and therefore er − 1 ≈ r is also small.

The following lemma bounds how long z‖i+1 and z⊥i+1 can be relative to z‖i and z⊥i .

Lemma 18. Let P and 0 < r ≤ log(1/λ)/2 be as above, and let E be a diagonal matrix with diagonal
entries (erf(v))v∈V for some function f : V → [0, 1] with mean ρ = Ev[f(v)]. Then for any z ∈ RN :

1. ‖(EPz‖)‖‖ ≤ (1 + (er − 1)ρ) · ‖z‖‖.

2. ‖(EPz‖)⊥‖ ≤ er−1
2 · ‖z‖‖.

3. ‖(EPz⊥)‖‖ ≤ er−1
2 · λ · ‖z⊥‖.

4. ‖(EPz⊥)⊥‖ ≤
√

λ · ‖z⊥‖.

Proof. (1): (EPz‖)‖ = (Ez‖)‖ = 〈1, Ez‖〉u = 〈1, Eu〉z‖ = Ev

[
erf(v)

] · z‖, and using the fact that
erx ≤ 1 + (er − 1)x for all 0 ≤ x ≤ 1, we have

‖(EPz‖)‖‖ = E
v

[
erf(v)

]
· ‖z‖‖ ≤ E

v
[1 + (er − 1)f(v)] · ‖z‖‖ = (1 + (er − 1)ρ) · ‖z‖‖.

(2): Recalling that (z‖)⊥ = 0 for all z, we note that for any α ∈ R,

(EPz‖)⊥ = (Ez‖)⊥ = ((E − α · I)z‖)⊥ + (α · z‖)⊥ = ((E − α · I)z‖)⊥.

19

Thus, we choose α = er+1
2 so that E −α · I is diagonal with entries bounded by er−1

2 in absolute value
(since er − α = er−1

2 and e0 − α = − er−1
2). Then,

‖(EPz‖)⊥‖ = ‖((E − α · I)z‖)⊥‖ ≤ er − 1
2

· ‖z‖‖.

(3): Recalling that (Pz⊥)‖ = 0 for all z, we note that for any α ∈ R,

(EPz⊥)‖ = ((E − α · I)Pz⊥)‖ + (α · Pz⊥)‖ = ((E − α · I)Pz⊥)‖.

Again, we choose α = er+1
2 so that E−α · I is diagonal with entries bounded by er−1

2 in absolute value,
and get

‖(EPz⊥)‖‖ = ‖((E − α · I)Pz⊥)‖‖ ≤ er − 1
2

· ‖Pz⊥‖ ≤ er − 1
2

· λ · ‖z⊥‖,

where the last inequality uses the fact that ‖Pz⊥‖ ≤ λ · ‖z⊥‖ for any vector z ∈ RN .

(4): ‖(EPz⊥)⊥‖ ≤ ‖EPz⊥‖ ≤ er · ‖Pz⊥‖ ≤ erλ · ‖z⊥‖, and since we assume that r ≤ log(1/λ)/2, this
is at most

√
λ · ‖z⊥‖.

Recall that z0 = u and zi+1 = Ei+1Pzi. We now show that z⊥i remains short compared to the previous
z‖j ’s.

Lemma 19. ‖z⊥i ‖ ≤ er−1
1−λ ·max

j<i
{‖z‖j‖} for 1 ≤ i ≤ k.

Proof. By the triangle inequality,

‖z⊥i ‖ = ‖(EiPzi−1)⊥‖ = ‖(EiPz‖i−1)
⊥ + (EiPz⊥i−1)

⊥‖ ≤ ‖(EiPz‖i−1)
⊥‖+ ‖(EiPz⊥i−1)

⊥‖.

Thus, by Items 2 and 4 of Lemma 18, we have ‖z⊥i ‖ ≤ er−1
2 · ‖z‖i−1‖+

√
λ · ‖z⊥i−1‖.

Recursively applying this bound, and noting that ‖z⊥0 ‖ = 0, we have

‖z⊥i ‖ ≤
er − 1

2
·

i−1∑

j=0

(
√

λ)j‖z‖i−j−1‖ ≤
er − 1

2(1−
√

λ)
·max

j<i
{‖z‖j‖}.

The lemma follows by noting that 1/(1−
√

λ) = (1 +
√

λ)/(1− λ) ≤ 2/(1− λ) since λ ∈ [0, 1].

We now use Lemma 19 to bound ‖z‖i ‖ inductively.

Lemma 20. ‖z‖i ‖ ≤ exp
{

(er − 1)µi + λ·(er−1)2

2(1−λ)

}
·max

j<i
{‖z‖j‖}, for 1 ≤ i ≤ k.

Proof. By the triangle inequality,

‖z‖i ‖ = ‖(EiPzi−1)‖‖ = ‖(EiPz‖i−1)
‖ + (EiPz⊥i−1)

‖‖ ≤ ‖(EiPz‖i−1)
‖‖+ ‖(EiPz⊥i−1)

‖‖.

Thus, by Items 1 and 3 of Lemma 18, we have ‖z‖i ‖ ≤ (1 + (er − 1)µi) · ‖z‖i−1‖+ er−1
2 · λ · ‖z⊥i−1‖, and

so by Lemma 19,

‖z‖i ‖ ≤ (1+(er−1)µi)·‖z‖i−1‖+
λ · (er − 1)2

2(1− λ)
·max
j<i−1

{‖z‖j‖} ≤
(

1 + (er − 1)µi +
λ · (er − 1)2

2(1− λ)

)
·max

j<i
{‖z‖j‖}.

20

Finally, using the fact that 1 + x ≤ ex for all x ≥ 0, we conclude that this is at most

exp
{

(er − 1)µi +
λ · (er − 1)2

2(1− λ)

}
·max

j<i
{‖z‖j‖}.

Recalling that ‖z‖0‖ = 1/
√

N , Lemma 20 implies that for all j ≥ 0:

‖z‖j‖ ≤
1√
N

j∏

i=1

exp
{

(er − 1)µi +
λ · (er − 1)2

2(1− λ)

}
,

and in particular, by (3),

E
[
erX

]
=
√

N ·‖z‖k‖ ≤
k∏

i=1

exp
{

(er − 1)µi +
λ · (er − 1)2

2(1− λ)

}
= exp

{
(er − 1)µ +

λ · (er − 1)2

2(1− λ)
· k

}
. (4)

To simplify this expression, we shall assume that r ≤ 1/2 (and thus that er − 1 ≤ r + 2r2/3 ≤ 4r/3)
and we note that µ ≤ k:

E
[
erX

] ≤ exp
{

(r + r2)µ +
λ · (4r/3)2

2(1− λ)
· k

}
≤ erµ+r2·(1+ λ

1−λ)·k = erµ+ r2k
1−λ .

Thus, by (1) we have

Pr [X ≥ µ + εk] ≤ E
[
erX

]

erµ+rεk
≤ e

(
r2

1−λ
−rε

)
k
.

Finally, we minimize this probability by setting r = (1 − λ)ε/2, noting that r is indeed at most
min{1/2, log(1/λ)/2} simply because ε ≤ 1 and 1− λ ≤ log(1/λ) for all λ ∈ [0, 1]. It follows that

Pr [X ≥ µ + εk] ≤ e−
ε2(1−λ)k

4 .

Remark 21. One can readily see that the same proof applies even if the graph is different for each
of the k steps, as long as it is a λ-expander at each step. This is observation is important for the
proof of correctness of our sampler (Theorem 3), as that construction concerns a walk on an expander
graph that is varying from one step to the next step. This observation is not unique to our proof of
the Chernoff bound, and this same property has been exploited before, most notably in the hardness
amplification result of Goldreich et al. [GIL+90] (although there, they only require the hitting property
of expander walks, and not the stronger sampling properties guaranteed here).

5.2 A Multiplicative Strong Chernoff Bound

As exemplified in Section 3.3, it is sometimes useful to have tail bounds that are sharper than Theorem
1 when considering rare events and large deviations from the mean. In this section we prove bounds
(Theorem 22 and Corollary 23) that improve upon Theorem 1 in this case, provided that the eigenvalue
λ is sufficiently small.

21

The motivation for such bounds comes from the case of independent random variables. Indeed, it is
well known that the standard additive Chernoff bound of the form Pr[X ≥ E[X]+εk] ≤ e−Ω(ε2k) (where
X = X1 + · · ·+ Xk is a sum of i.i.d. Bernoulli random variables Xi) is suboptimal when the mean of
the Xi’s is very small and ε is large. For instance, if we take E[Xi] = 1/k and we consider Pr[X ≥ k/2],
then the standard Chernoff bound (with ε = 1/2− 1/k) only bounds this probability by e−Ω(k), when
in fact it is possible to show that Pr[X ≥ k/2] ≤ e−Ω(k log k) (e.g., via a multiplicative Chernoff bound,
such as Theorem 4.1 of [MR95]).

The analogous case for expander walks is when the set we are trying to sample is very small (or more
generally when, in the notation of Theorem 1, the µi are small). To obtain a sharper bound in this
setting, however, one should have an eigenvalue λ that is quite small, and then it is possible to slightly
modify the proof of Theorem 1 to obtain a bound analogous to Theorem 4.1 of [MR95]:

Theorem 22. Fix a sequence of functions fi : V → [0, 1] each with mean µi = Ev[fi(v)] and let
µ =

∑k
i=1 µi. If we consider a random walk v1, . . . , vk on a λ-expander G, then for all δ > 0,

Pr

[
k∑

i=1

fi(vi) ≥ (1 + δ)µ

]
≤

(
eδ

(1 + δ)1+δ

)
(

1− λ
1−λ

·
(

k
µ

)2
)

µ

.

In particular, when λ = 0 this matches Theorem 4.1 of [MR95]. We also note that eδ/(1 + δ)(1+δ) =
eδ−(1+δ) log(1+δ) ≤ 1 for all δ ≥ 0, simply because δ ≤ (1 + δ) log(1 + δ) (as can easily be verified by
comparing the derivatives of both sides). Thus, the bound is nontrivial whenever λ

1−λ < (µ/k)2. So,
for instance, if we are interested in sampling a set of density α, then we should use an expander with
λ . α2 in order to meaningfully apply Theorem 22. In particular, if λ is sufficiently small compared
to α, say λ ≤ α2/3, then the bound from Theorem 22 is never more than the square-root of the bound
for independent random variables (i.e., Theorem 4.1 of [MR95]) – see also the proof of Corollary 23.

Consequently, Theorem 22 is sharper than Theorem 1 in the same way that a multiplicative Chernoff
bound is sharper than the standard additive Chernoff bound, provided that λ is sufficiently small. For
instance, analogously to the example of independent random variables described above, if we have a
set S ⊆ V of nodes of density 1/k and take a random walk of length k, then the probability of landing
in S at least k/2 times is at most e−Ω(k log k) (provided that λ . 1/k2), and not just e−Ω(k) (which
is all that Theorem 1 gives). When bounding the probability of large derivations from the mean (as
in the previous example), the bound from Corollary 23 is often easier to work with and essentially as
good as Theorem 22. Indeed, this is the bound that we employ in the analysis of our alternate sampler
construction from Section 3.3 (i.e., Proposition 15).

Proof of Theorem 22. The proof is identical to the proof Theorem 1 up to the derivation of (4), at which
point we make a different choice of the parameter r. In particular, we first equate the notation of Theo-
rem 22 with that of Theorem 1 by taking ε = δµ/k. Indeed, then Pr [X ≥ µ + εk] = Pr [X ≥ (1 + δ)µ],
and so (1) now becomes

Pr [X ≥ (1 + δ)µ] ≤ E
[
erX

]

er(1+δ)µ
. (5)

22

Next, in contrast to the proof of Theorem 1, we choose r = log(1 + δ) (rather than r = (1 − λ)ε/2 =
(1−λ)δµ/2k). Before proceeding, however, we must check that r ≤ log(1/λ)/2, as required throughout
the proof of Theorem 1: we may assume, with no loss of generality, that 1+δ ≤ k/µ (indeed, the result
is trivial if δ > k/µ− 1), and we may assume that λ ≤ (µ/k)2, since otherwise the bound stated in the
Corollary is larger than 1. Therefore, we have r ≤ log(k/µ) ≤ log(1/λ)/2.

Substituting r = log(1 + δ) into (4), we have

E
[
erX

] ≤ e
µδ+ λδ2k

2(1−λ) ,

and thus, by (5), we have

Pr [X ≥ (1 + δ)µ] ≤ e
µδ+ λδ2k

2(1−λ)

elog(1+δ)(1+δ)µ
= e

(
δ+ λδ2

2(1−λ)
· k
µ
−(1+δ) log(1+δ)

)
µ
. (6)

To bound this expression, we first establish that

δ2

2
≤ k

µ
· [(1 + δ) log(1 + δ)− δ] . (7)

Indeed, both sides of this expression are equal to 0 when δ = 0, and we shall verify that the derivative
of the left-hand side (with respect to δ ∈ [0, k/µ − 1]) is always bounded by the derivative of the
right-hand side: the derivative of the left-hand side is δ and the derivative of the right-hand side is
k
µ · log(1 + δ), and δ ≤ (1 + δ) log(1 + δ) ≤ k

µ · log(1 + δ) for δ ∈ [0, k/µ− 1], so (7) holds.

Thus, by applying (7) to bound the δ2/2 term that appears in (6), we have

Pr [X ≥ (1 + δ)µ] ≤ e

(
δ+ λ

1−λ
·
(

k
µ

)2·[(1+δ) log(1+δ)−δ]−(1+δ) log(1+δ)

)
µ

= e

(
1− λ

1−λ
·
(

k
µ

)2
)
·[δ−(1+δ) log(1+δ)]µ

,

and the result follows.

As mentioned above, a bound like Theorem 22 is better than Theorem 1 when µ is small and δ is large
(and when we can afford to choose λ to be sufficiently small). With this in mind we mention a simpler,
albeit less general, form of the bound:

Corollary 23. Fix a sequence of functions fi : V → [0, 1] each with mean µi = Ev[fi(v)] and let
µ =

∑k
i=1 µi. Furthermore, let G be a regular λ-expander on V for some λ ≤ (µ/k)2/3. If we consider

a random walk v1, . . . , vk on G then

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(eµ

t

)t/2
.

Proof. We let δ = t/µ− 1 so that t = (1 + δ)µ. Then by Theorem 22,

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(
eδ

(1 + δ)1+δ

)µ

(
1− λ

1−λ
·
(

k
µ

)2
)

.

23

Since we assume λ ≤ (µ/k)2/3 ≤ 1/3, we have that λ
1−λ ·

(
k
µ

)2
≤ 1/2, and thus

Pr

[
k∑

i=1

fi(vi) ≥ t

]
≤

(
eδ

(1 + δ)1+δ

)µ/2

<

(
e

1 + δ

)(1+δ)µ/2

=
(eµ

t

)t/2
.

6 Open Questions

In this work we construct an extremely efficient sampler that is in many respects “just as good” as
random-walk sampling using a constant-degree expander graph; a natural question that is left open,
however, is whether AC0[⊕] can actually compute long expander walks – that is, whether there exists
a family of constant-degree expander graphs for which a family of AC0[⊕] circuits can compute walks
v1, . . . , vk when given a starting node v0 and steps s1, . . . , sk. (Or, one could even remove the restriction
on the input format and just ask for a generator whose output distribution is the same as – or even
statistically close to – a random walk on an expander.) Our techniques come close: indeed, the approach
of Section 3.1 can easily be modified to obtain a circuit that computes walks on the zig-zag product
G©z H when given a circuit for computing walks on H. (Recall that G has size 2n and degree poly(n),
and H has size poly(n).) Thus, if we take H to be an exponentially-smaller copy of G (of size poly(n)
and degree polylog(n)) – rather than a constant-degree expander – AC0[⊕] can compute long walks
on H and therefore can also compute walks on the graph G©z H of degree polylog(n); in fact, by
recursively applying a constant number of such zig-zag products, we obtain an expander G′ of size at
least 2n and degree at most poly(log(t) n) for any constant t. Alternatively, by repeating this recursion
log∗ n times, we obtain a constant-degree expander G′ and a family of circuits of depth O(log∗ n) for
computing walks on G′. Can this depth be reduced to O(1)? Even less ambitiously, is there any family
of constant-degree expander graphs for which a family of (nonuniform) NC1 circuits can compute long
walks?

There is also the question of lower-bounds. We suspect that AC0 cannot compute samplers that match
the parameters of our AC0[⊕] construction. One approach to showing this is to use the equivalence
of samplers and extractors from [Zuc97] (see also the discussion in Section 3.4) and show that AC0

cannot compute a (strong) extractor for sources of high constant min-entropy. Viola [Vio04] has shown
that AC0 cannot compute an extractor for sources of low min-entropy; however, his techniques do not
seem to apply directly in this setting.

7 Acknowledgements

Thanks are due to Kai-Min Chung, Oded Goldreich, Danny Gutfreund, Salil Vadhan, Emanuele Viola
and David Zuckerman for various discussions, suggestions and their encouragement. In particular,
Emanuele offered some helpful comments on an early draft of this work, and Oded’s thorough reading

24

of this paper and his many comments are greatly appreciated. Thanks also to David Xiao for an
email exchange about [WX05] and [WX06] and to the anonymous Random 2006 reviewers for their
comments.

References

[ABO84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computation.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pages 471–
474, April 30 – May 2 1984.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures & Algorithms, 3(3):289–
304, 1992.

[Ajt93] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances in
computational complexity theory, pages 1–20. Amererican Mathematical Society, 1993.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network. Combinatorica,
3:1–19, 1983.

[AKS87] M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in LOGSPACE. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 132–140,
May 25–27 1987.

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random Structures
& Algorithms, 5:271–284, 1994.

[AS00] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley and Sons, Inc., 2000.

[BGG93] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in interactive proofs. Compu-
tational Complexity, 4(1):319–354, 1993.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990.

[BYGW99] Z. Bar-Yossef, O. Goldreich, and A. Wigderson. Deterministic amplification of space-
bounded probabilistic algorithms. In Proceedings of the 14th Annual IEEE Conference on
Computational Complexity, pages 188–198, June 1999.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms for
estimating the average. Information Processing Letters, 53(1):17–25, 1995.

[CW89] Aviad Cohen and Avi Wigderson. Dispersers, deterministic amplification, and weak ran-
dom sources. In Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 14–19, October 30 – November 1 1989.

25

[Din95] I. H. Dinwoodie. A probability inequality for the occupation measure of a reversible Markov
chain. Annals of Applied Probability, 5(1):37–43, 1995.

[Fil91] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible Markov
chains with an application to the exclusion process. Annals of Applied Probability, 1:62–
87, 1991.

[FK06] Lance Fortnow and Adam Klivans. Linear advice for randomized logarithmic space. In
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science, pages 469 – 476. Springer, February 23–25 2006.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[GG81] O. Gabber and Z. Galil. Explicit construction of linear size superconcentrators. Journal
of Computer and System Sciences, 22:407–420, 1981.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam Venkatesan, and
David Zuckerman. Security preserving amplification of hardness. In Proceedings of the
31st Annual IEEE Symposium on Foundations of Computer Science, pages 318–326, 1990.

[Gil94] David Gillman. A Chernoff bound for random walks on expander graphs. In Proceedings of
the 34th Annual IEEE Symposium on Foundations of Computer Science, pages 680–691,
1994.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), (TR97-020), May 1997.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness, vol-
ume 17 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1999.

[GV04] Dan Gutfreund and Emanuele Viola. Fooling parity tests with parity gates. In Proceed-
ings of the 8th International Workshop on Randomization and Computation (RANDOM),
volume 3122 of Lecture Notes in Computer Science, pages 381–392, August 22–24 2004.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. MIT Press, 1987.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields
of characteristic two. In Proceedings of the 23rd Annual Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Computer Science, pages 672 – 683. Springer,
February 23–25 2006.

26

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 220–229, May 4–6 1997.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In Proceedings of
the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 248–253,
October 30 – November 1 1989.

[Kah97] N. Kahale. Large deviation bounds for Markov chains. Combinatorics, Probability and
Computing, 6(4):465–474, 1997.

[L9́8] P. Lézaud. Chernoff-type bound for finite Markov chains. Annals of Applied Probability,
8(3):849–867, 1998.

[LP04] Carlos A. León and François Perron. Optimal Hoeffding bounds for discrete reversible
Markov chains. Annals of Applied Probability, 14(2):958–970, 2004.

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatroica, 8(3):261–277,
1988.

[Mar73] G. A. Margulis. Explicit constructions of expanders. Problemy Peredachi Informatssi;
English translation, Problems of Information Transmission, 9(4):71–80, 1973.

[Mih89] M. Mihail. Conductance and convergence of Markov chains: a combinatorial treatment
of expanders. In Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 526–531, October 30 – November 1 1989.

[MNT90] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of
universal hashing. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, pages 235–243, May 14–16 1990.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12, 1992.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applica-
tions. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
213–223, May 14–16 1990.

[Raz87] Alexander A. Razborov. Lower bounds on the dimension of schemes of bounded depth
in a complete basis containing the logical addition function. Akademiya Nauk SSSR.
Matematicheskie Zametki, 41(4):598–607, 623, 1987.

27

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pages 376–385, May 21–24 2005.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph prod-
uct and new constant-degree expanders. Annals of Mathematics, 155(1):157–187, January
2002.

[Sak96] Michael Saks. Randomization and derandomization in space-bounded computation. In
Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages
128–149, May 24–27 1996.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
European Association for Theoretical Computer Science, (77):67–95, 2002. Columns: Com-
putational Complexity.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
foundations of computer science (Tatranská Lomnica, 1977), volume 53 of Lecture Notes
in Computer Science, pages 162–176. Springer, Berlin, 1977.

[Vio04] Emanuele Viola. The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity, 13(3-4):147–188, 2004.

[Vio05] Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary sym-
metric gates. In Proceedings of the 20th Annual IEEE Conference on Computational Com-
plexity, June 12–15 2005.

[Vol99] Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag, Berlin, 1999.

[WX05] Avi Wigderson and David Xiao. A randomness-efficient sampler for matrix-valued functions
and applications. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, October 22–25 2005. See also Electronic Colloquium on Computational
Complexity (ECCC) Technical Report TR05-107, http://eccc.hpi-web.de/eccc/.

[WX06] Avi Wigderson and David Xiao. Derandomizing the AW matrix-valued Chernoff bound
using pessimistic estimators and applications. Electronic Colloquium on Computational
Complexity (ECCC), (TR06-105), August 2006.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algo-
rithms, 11(4):345–367, 1997.

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, May 21–23 2006.

28

