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Abstract

This paper describes a technique for finding a certain types of anagrams, which we call subset anagrams.
Specifically, given a list of words or phrases, we look for two (disjoint) subsets of these words or phrases that are
anagrams of each other. The approach presented here makes use of powerful lattice reduction algorithms, and
is due to Noam Elkies [Elk] (see also [CS03]), who used it to produce an award-winning anagram [Ana02]. We
also describe some implementation details of the script at http://www.alexhealy.net/anagram.html that uses
this technique to find subset anagrams.

Introduction

On Sunday May 5, 2002, the following puzzle was posed as part of the National Public Radio (NPR) show “Weekend
Edition”: find two countries, such that the letters in their names can be rearranged to spell two other countries;
for example: MALI + QATAR = IRAQ + MALTA. It turns out that there are exactly three other solutions:

ALGERIA + SUDAN = ISRAEL + UGANDA
BELARUS + INDIA = LIBERIA + SUDAN

GABON + ITALY = LIBYA + TONGA

In this case, such anagrams can easily be found by a computer. Indeed, there are (at present) 192 countries in
the world. So there are

(192
2

)
= 18336 pairs of countries, and from each pair it is easy to compute the vector

(nA, nB , . . . , nZ), where nA is equal to the number of occurrences of the letter ’A’ in the given pair of countries.
Finally, we can sort the list of pairs of countries by ordering these vectors and then search for duplicates. Any
two pairs of countries that have the same vector (nA, nB , . . . , nZ) are clearly anagrams of each other. Such sorting
and searching operations are routinely performed on millions of records, so performing these task on a list of size
18336 is trivial for a modern computer. In general, if we use fast sorting algorithms that take time O(m log m)
to sort a list of m objects, then we have a list of m = O(n2) pairs of “countries”, which can be sorted in time
O(n2 log(n2)) = O(n2 log n). However, this approach quickly becomes impractical when we are looking for a large
set of countries that anagram to a different (large) set of countries, apart from just recombining smaller anagrams
to form a larger one. The next section discusses an approach for finding subset anagrams when this is the case.

Finding Subset Anagrams

Let f : {A,B, . . . , Z} → Z26 be the map that takes a word or phrase, w, and computes f(w) = (nA, . . . , nZ), where
nA is the number of occurrences of the letter A, etc. For example

f(“ANAGRAM”) = (3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

From this definition, it is clear that f(w1 + w2) = f(w1) + f(w2), where w1 + w2 represents the phrase that is
obtained by concatenating w1 and w2.
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Now suppose that we are given n words or phrases, w1, . . . , wn. A subset anagram of these words is simply a pair
of sets of indices, ({i1, i2, . . . , is}, {j1, j2, . . . , jt}) where ik, jk ∈ {1, . . . , n} and all ik and jk are distinct, such that

f(wi1 + · · · + wis) = f(wj1 + · · · + wjt)

or equivalently
f(wi1) + · · · + f(wis) = f(wj1) + · · · + f(wjt)

For convenience of notation, we write vi = f(wi), and so this last expression can be rewritten as

vi1 + · · · + vis = vj1 + · · · + vjt

or more suggestively, as
vi1 + · · · + vis − vj1 − · · ·− vjt = 0⃗

Thus, if we let u be the n-dimensional vector defined by

uk =

⎧
⎨

⎩

1 k ∈ {i1, . . . , is}
−1 k ∈ {j1, . . . , jt}

0 otherwise

then we have that u is in the kernel of the 26 × n matrix

V =

⎛

⎝

⎡

⎣
|
v1

|

⎤

⎦

⎡

⎣
|
v2

|

⎤

⎦ · · ·

⎡

⎣
|

vn

|

⎤

⎦

⎞

⎠

whose columns are the vectors vi, i.e. V u = 0⃗. Conversely, any vector u′ ∈ {1, 0,−1}n that is in ker(V ) defines a
subset anagram ({i1, i2, . . . , is}, {j1, j2, . . . , jt}) where ik are the indices of 1’s in u′, and jk are the indices of −1’s
in u′. Thus, the problem of finding subset anagrams is equivalent to finding {1, 0,−1}-vectors in ker(V ).

Let us now consider the structure of the ker(V ). Since we are only interested in integer vectors in the kernel
(particularly those with entries that are 1, 0 or −1), we may restrict our attention to the so-called integer kernel
of V , i.e. ker(V ) ∩ Zn. It is not hard to see that ker(V ) ∩ Zn is a discrete subgroup of Zn i.e. an integer lattice,
and efficient algorithms exist [Coh93] for computing a (lattice) basis for the integer kernel of an integer matrix
such as V . That is, there is an efficient algorithm that, given V , computes a set of linearly independent vectors
B = {b1, . . . , bm} ∈ Zn such that ker(V ) ∩ Zn = Zb1 + · · · + Zbm.

Now we are left with the task of finding {1, 0,−1}-vectors in the lattice generated by B, denoted L(B) (i.e.
L(B) = ker(V ) ∩ Zn). Intuitively, a {1, 0,−1}-vector u in this lattice, is a relatively short vector. In fact, the
{1, 0,−1}-vectors in L(B) are exactly those vectors, u, whose ℓ∞ norm, ∥u∥∞ = maxi{|ui|}, is at most 1. Also,
all such vectors have ℓ2-norm at most

√
n, although the converse is not true in general: there may be other lattice

vectors of ℓ2-norm at most
√

n that are not {1, 0,−1}-vectors. Nonetheless, we will search for lattices vectors that
are short with respect to the ℓ2-norm, in the hopes that they will also be short for the ℓ∞-norm, simply because
the best known algorithms for finding short lattice vectors are designed for the ℓ2-norm (by virtue of the natural
inner-product that accompanies it). The problem of lattice basis reduction is that of computing a basis for a given
lattice that (in a precise sense) consists of short, nearly-orthogonal, vectors. There are a variety of definitions
of reduced and approximately-reduced lattice bases and many of them are NP-hard to compute for arbitrary
lattices [MG02]. Nonetheless, there exist efficient (polynomial-time) approximation algorithms ([LLL82], [Coh93],
[MG02]) that have theoretical guarantees on the quality of the reduced basis that they return, and that often work
extremely well (i.e., much better than the theoretical guarantees) in practice. Thus, it seems appropriate to use
such algorithms to find short vectors in the lattice L(B), and this is the approach taken here.

The subset anagram finder at http://www.alexhealy.net/anagram.html consists of a CGI script written in Python
that calls a C++ program that applies the above algorithm to the given words or phrases. Victor Shoup’s NTL
library [Sho] is used for the lattice routines. In particular, the function image() is used to compute a basis for the
kernel of the matrix V (the function is called “image()” because it computes a basis for the image and a basis for
the kernel simultaneously), and the function BKZ FP() is used to apply “Block Korkin-Zolotarev” reduction to the
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basis for ker(V ) ∩ Zn. The block size is originally set to be 5, and then is incremented by 5 after each subsequent
call to BKZ FP(), until the block size is 100 or until the script has run for more than 2 seconds. (A larger block size
results in a more reduced basis, but consequently causes the lattice reduction routine to run more slowly.) This is
to ensure that the CGI script returns promptly and does not use too much CPU time on the server. Finally, any
basis vectors that belong to {1, 0,−1}n ⊂ Zn are returned. Therefore, the subset anagrams that are returned form
a basis for a sublattice of ker(V ) ∩ Zn, and hence are “linearly independent”.

Generalizations and Variations

The above algorithm can clearly be extended to larger alphabets to include numbers and symbols for example, or
to be case-sensitive. (The current implementation is not case-sensitive.) It is also interesting to note that if there
are numbers that are naturally associated with each word or phrase (such as atomic weights for elements, or dates
of birth for authors, etc.), then these values can be placed in a special additional coordinate of the transformed
vectors vi, and the resulting anagrams (if any are found) will not only be subset anagrams, but they will have the
property that the sum of the numbers on one side of the anagram is equal to the sum of the numbers on the other
side. These are just a few of many possible variants and generalizations of this technique.
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